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Abstract—Autonomous cyber-physical systems like robots and
self-driving cars could greatly benefit from using formal methods
to reason reliably about their control decisions. However, before a
problem can be solved it needs to be stated. This requires writing
a formal physics model of the cyber-physical system, which is a
complex task that traditionally requires human expertise and
becomes a bottleneck.

This paper experimentally studies whether Large Language
Models (LLMs) can automate the formalization process. A 20
problem benchmark suite is designed drawing from undergrad-
uate level physics kinematics problems. In each problem, the
LLM is provided with a natural language description of the
objects’ motion and must produce a model in differential game
logic (dGL). The model is (1) syntax checked and iteratively
refined based on parser feedback, and (2) semantically evaluated
by checking whether symbolically executing the dGL formula
recovers the solution to the original physics problem. A success
rate of 70% (best over 5 samples) is achieved. We analyze
failing cases, identifying directions for future improvement. This
provides a first quantitative baseline for LLM-based autofor-
malization from natural language to a hybrid games logic with
continuous dynamics.

Index Terms—hybrid systems, synthesis, verification, counter-
example, large language models

I. INTRODUCTION

Formal methods seem especially useful in the safety-critical
but mathematically complex domain of cyber-physical systems
(CPSs), i.e., systems like robots and planes where discrete soft-
ware interacts with the continuous dynamics of the real world.
However, a bottleneck preventing broader industry adoption
is the challenge of writing a formalization for these systems
[20]. Unlike program verification, where a mathematically
meaningful object to verify already exists in the form of a
program, for CPSs, we must first create a formal model of the
physical system and environment. This process is notoriously
difficult, time-consuming, and error-prone.

Can large language models (LLMs) help autoformalize
physical systems? They have shown autoformalization abilities
for mathematics [12], [24] and CPS contracts [1], [17]. This
paper presents a first, experiment-focused exploration of the
ability of LLMs to autoformalize the underlying physics prob-
lems, faithfully preserving their exact continuous dynamics
and discrete transitions in differential game logic (dGL) [18].
We propose 20 benchmarks derived from hard undergraduate
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kinematics problems [8], [13], [14]. We find that, supported
by few-shot prompting and parser feedback, OpenAl 03 has
a top-5 accuracy of 70% (success rate on selecting the best
out of 5 attempts per benchmark). The main cause of failure
is checker limitations for the most complex problems.

Our benchmarks and pipeline are available as an online ar-
tifact at https://doi.org/10.1184/R1/28934195. Evaluating aut-
oformalization of a physical system is challenging because
every problem has many valid formal representations, and
conversely, models can be incorrect for many subtle reasons.
To automatically assess the semantic proximity of generated
formal models to the original physics problem, we provide a
checker that:

1) performs symbolic execution over the generated formal
model, examining whether the expected symbolic solu-
tion to the original physics problem is recovered.

2) ensures the model is not in stasis by requiring that a
minimum number of variables are mutated, indicating
they are subject to physical effects.

Recovering the expected solution to the original natural lan-
guage problem is a strong indication that the formalization
models the problem correctly, though the checker may some-
times reject answers that are in principle correct but missed
some implicit assumptions that the original solution made.

Autoformalization of physical models can have tremen-
dous impact on reliable autonomy. Unlike in mathematics,
validating a hypothesized CPS formalization is possible with
comparisons between real measurements and predicted mea-
surements during test runs [15]. Easy formalization would
allow every modular component to be modeled formally,
with all assumptions explicit. Verification could lead to safer
systems and synthesis could make control system design easier
while ensuring no edge cases are missed relative to the formal
model.

II. OVERVIEW

This section explains by example what the process of
autoformalizing a physics problem involves. Consider the
following physics question [8, problem 1.2], which will serve
as a running example:

“A point traversed half the distance with a velocity
vo. The remaining part of the distance was covered
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with velocity v; for half the time, and with velocity
vy for the other half of the time. Find the mean
velocity of the point averaged over the whole time
of motion.”

Solution: “vayg = 732252;:’52) ”

The physical motion described here is hybrid, with con-
tinuous dynamics (motion at velocity vg, v1, and finally vs)
as well as discrete transitions (changing velocity under speci-
fied conditions). Additionally, there are non-trivial conditions
describing when the discrete transitions happen. We seek to
symbolically model this motion formally.

A canonical way to express control problems is via hybrid
games [6], [23]. Hybrid games are commonly formalized in
two ways: via hybrid automata [6] and via logic [18]. In
this paper, we target the logic formalization as it is closer
to code, which LLMs have been more exposed to and trained
for. Differential game logic (dGL) is a logic expressing two-
player hybrid games with a relatively complete axiomatization
[18]. A detailed and gradual introduction can be found in the
literature [19]. Model 1 shows an example of a dGL hybrid
game which formalizes the running example.

Model 1 Running Example: Finding Mean Velocity
setup| 1 <:€ =0; dvavg :=0;

phase O‘ 2 {z' = 00, dyayg = Vavg} 3 dn =
phase 1 | 3 t:=0; {z’:vl,df,avg:va\,g,t’zl} :
phase 2|4  tn:=1t; {2’ = vy, dayg = Vavg,t' = 1} ;

transitions | s 7t = 2t ; 7z = 2d),
winwhen |6 )dag =

In this game, a player (canonically called Angel) runs
physical dynamics per the problem specification, moving the
point’s position x with velocity vy in phase 0 on Line 2, with
velocity vy in phase 1 on Line 3, and with velocity v, in phase
2 on Line4). Angel is forced to transition between phases
under the exact conditions specified by the problem because
of tests (assertions) on Line 5. These assertions use auxiliary
variables ty, to keep track of the time elapsed in phase 1, ¢ to
keep track of time elapsed in phase 1 and phase 2 combined,
and dj, to keep track of half the distance covered. On Line 5,
test 7z = 2dj, ensures that the first phase transition occurred
when half the distance was covered. The test 7t = 2¢;, ensures
that the second transition happened at half the total run time
of phases 1 and 2. If Angel fails either test condition, she
immediately loses the game.

Notice that there is a variable vayg representing average
velocity, and Line6 says that Angel will win the game
only if vayg was correct, as checked using auxiliary variable
dyvavg, which tracks the displacement covered by a particle
traveling at vayg through all phases. The value that vayg must
hold for Angel to win matches the solution to the original
problem, vayg = % In this example, there happens
to be no adversarial dynamics (Angel is the only player
making decisions). However, in problems with adversarial

nondeterminism such as unpredictable environmental factors
or controller latency, a second, symmetric, adversarial player
(canonically called Demon) models the situation by resolving
nondeterminism with the goal to make Angel lose. Adversarial
dynamics are also useful for optimization problems, e.g.,
“choose the launch angle that minimizes drift”, which can be
modeled as Angel and Demon competing to find this angle.

Having formalized the problem as a dGL hybrid game, we
next describe how symbolic execution enables a check for
whether the model aligns with the natural language question.
For the fragment of dGL where most of the chosen benchmark
problems to lie (loop-free, polynomial solutions), symbolic
execution is decidable and existing work [10] describes how to
perform it. Backwards symbolic execution over a game lets us
compute the conditions under which Angel (or dually, Demon)
can win the game. For example, symbolic execution of the
subgame (Line5)dyvayg = « at the end of Model I evaluates
to T = dyayg ANt = 2t, Az = 2d;, which is precisely the
weakest precondition starting from which Angel passes the
tests of Line 5 and ends the game in a state where she wins.
Consider the precondition ¢ of Line 1 computed in this way.
Angel should be able to win the game exactly when vayg is
set to the correct solution, i.e., Vayg = % < ¢. Such
a check is implemented using Z3 and Mathematica.

Observe that even a minor modeling mistake can result in
this check failing. In fact, symbolically executing Model 1
reveals that it is actually equivalent to T. It suffers from a
subtle exploit where Angel can always run each phase for 0
time, in which case zayg = * = 0 regardless of what vayg
is set to. The problem is that the model lets Angel choose
the distance that the particle will travel, as her choice at
Line 2 determines the value of half-distance d;,, which in turn
determines the distance that phases 1 and 2 must cover. The fix
is simple: the assignment dj, :=  on Line 2 should be turned
to a test ?d;, = x. The automated check was able to catch
this difference and is a strong signal of correctness, especially
in combination with manual review. The automated checker
has a second test to ensure the system is not in stasis, ruling
out empty games that exploit the symbolic execution test by
setting the win condition directly to the desired solution. For
this example, the second test checks via static analysis that at
least two variables are written to, since any reasonable model
will at least modify the variables representing the particle’s
position and time. The checker is provided with the minimum
number of variables that must be written to and the expected
solution for every benchmark problem.

Finally, we see the benefit of formal modeling when the
model with Line2 corrected is still not equivalent to the
expected solution. The problem is that the textbook solution
is correct only under some unstated assumptions: distance
d is non-zero, velocity vy is positive, and v; + v is also
positive. Finally, Model2, makes these assumptions. Under
the assumptions of Model2, Line 1, the modal formula from
Model 2, Line2 to Line7 is equivalent to % In
unverified or informal physics, subtle modeling glitches are



widespread. As a human, it is easy to neglect a measure
zero case like dj, = 0 during an intermediate calculation, but
formalization forces this case to be explicit.

Model 2 Repaired Model: Finding Mean Velocity
assum2| 1 (d, >0Awvg>0Av +v2>0) —
setup\ 2 <aﬁ:=0;dvavg =0;

phase 0|3 {2’ =wo,diayg = vavg} ; 7dn ==;
phase 1|4  t:=0; {2’ = v1,djayg = vavg,t' = 1} ;
phase 2| 5 tpi=t; {x’ = vg,d\',avg = Vavg, t' = 1} ;

= 2th; Tx = 2dh

> dvavg =T

transitions | 6
win when \ 7

This example begins to demonstrate why formalizing a
hybrid physical problem is not a simple translation task. Intro-
ducing the right auxiliary variables, absent in the specification,
is often necessary for a clean, tractable formalization. All the
pieces of the model must fit together precisely, e.g., even
making a weak inequality strict can transform a correct model
into one admitting no runs [22]. Correctness requires careful
attention to the subtleties of the problem specification, e.g.,
benchmark problem 10 (available in the online artifact [9])
has one variable representing a displacement and another,
representing a distance. The former is a signed number while
the latter must be modeled as non-negative. Models must prune
mathematically degenerate cases using background knowledge
of the physical world, e.g., by eliminating imaginary roots of
polynomials computing real quantities. Additionally, there are
many ways to model the same problem, and the right choice
of coordinate system or frame of motion can be crucial to
writing a model for which symbolic reasoning is tractable.

Given the complexity of the task, it is unclear whether
LLMs can succeed at all, making a careful evaluation nec-
essary. We create a benchmark suite drawing from textbooks
and problem sets [8], [13], [14], choosing tricky problems with
varying structures to systematically identify the strengths and
weaknesses of LLMs on autoformalization.

III. METHODOLOGY

The autoformalization system, shown by Fig. 1, takes as in-
put the natural language specification of the physical problem
to model, and produces either a correct dGL formalization of
a failure (no formalization found that passed the checker). It
uses two types of LLM queries: one is Propose Formalization,
and the second one is Revise Formalization. The artifact [9]
shows all the prompt templates used.

The autoformalization system first queries the LLM to pro-
pose the formalization using the Propose Formalization query,
providing up to four solved examples as part of the prompt. It
provides an LLM with the natural language description of the
problem and asks it to produce a dGL formula, including in
the prompt common dGL syntax mistakes and their remedies.
An example of a problem description the prompt would use
based on the running example is

An object A starts from rest and travels a distance
d. For the first half of the distance, it travels with
velocity v0. For the second half of the distance, it
spends half the time traveling with velocity vl and
half the time traveling with velocity v2. Another
object B tracks A. Its motion has the same duration,
starting, and ending points as A, but it travels
with uniform velocity vavg. Let vavg remain a free
variable.
The prompt also includes upto four solved examples. The
returned formal model is passed to the KeYmaera X dGL
parser for a syntax check.

| KeYmaera X Parser | Parsery Procgss parser ou.tput into
Cd Feedback Error 2 ‘tccdbz.xck .slrmg?v,
Store (formalization, feedback)
if Parsing
Successful
\ 4

LLM: Revise Formalization
Given Feedback

LLM: Propose
Formalization

Natural s

Language
Specification

Y

S Correct dGL
Check Successful * | Formalization

—HEX ccted Semantic Checking

Solution

Check Failed 3

Incorrect
Formalization

Fig. 1. Autoformalization pipeline

If the syntax check fails, then the parser output is processed
into short feedback strings. An example of a parser feedback
string is

The input formula contains an unsupported Unicode
character (possibly {bad_char}). Use only ASCII
characters.

Where bad_char is a parameter extracted from parser
output. The incorrect formalization along with the feedback
is then appended to a list of previous failed formalization
attempts.

The LLM is prompted to repair the formalization given
past attempts and feedback using the Revise Formalization
query. The prompt first provides up to two examples of repair.
Then it provides the natural language question, and finally
past incorrect proposals along with the feedback indicating
why these proposals were wrong. The LLM replies with a
new, repaired dGL game, which is again passed to the parser
for checking. This syntactic repair loop is allowed to run
at most three times, after which autoformalization fails. A
full implementation along with examples is in the online
artifact [9].

If the syntax check succeeds, then the dGL formula is passed
onto the semantic evaluation system. This system takes as
input the expected symbolic solution to the problem along
with the proposed dGL formula. For our running example, the
expected solution consists of the formula vayg = %, to
test against for equivalence, and minimum expected number
of variables that are written to, 2. If the checker finds that



the dGL formula is equivalent to the expected solution under
the initial assumptions of the formula and has enough variable
writes, then it declares that the formalization is acceptable. The
pipeline is implemented using Delphyne [11] and KeYmaera X
[5], which in turn uses Z3 [3] and Mathematica.

IV. RELATED WORK

The use of LLMs for autoformalizing mathematics has
received significant research attention [12], [24], including for
purely continuous systems with partial differential equation
[4], [7]. Recent work also uses LLMs to synthesize contracts
for cyber-physical systems [1], [16], [17]. However, we focus
on LLM based autoformalization for physics models of hybrid
systems, with discrete transitions and continuous dynamics
faithfully represented, which to the best of our knowledge
has not yet been studied. Compared to general mathematics
and LTL specifications, we expect this domain to be more
data-scarce, with few examples of differential dynamic logic
system formalizations and even fewer examples of differential
game logic games available on the Internet. Additionally, we
expect CPS model formalization to have a more operational
flavor, modeling physical realities required to make a system
work rather than abstract concepts that can be simplified
for theoretical convenience (mathematics) or focused on only
output behavior (LTL contracts). This difference makes it
worth investigating the hybrid systems modeling domain.

V. EVALUATION

We propose 20 benchmarks derived from challenging prob-
lems in undergraduate physics textbooks and problem sets
[8], [13], [14]. The online artifact [9] lists them. Phrasing is
changed to focus on modeling the physical situation described
in the problem (rather than on solving for a variable) and
the numbers are changed to induce rational answers to avoid
failures of the automated check over numerical imprecision.
Each benchmark is accompanied by an expected symbolic
solution that the model should be equivalent to and the
minimum expected number of variables that must be written
to. Four additional problems, separate from the benchmarks,
serve as examples for few-shot prompting.

We run the LLM autoformalization system using OpenAl
GPT 40, GPT 4.1 (best available OpenAl non-reasoning
model) and OpenAl o3 (best available OpenAl reasoning
model) on the benchmark set, getting successively improving
results. Outcomes are classified into 4 buckets:

1) Success: Correct, checker-certified formalization.

2) Failed: autoformalization failed either the syntax or se-
mantic check.

3) Timeout: The solver timed out after 3 minutes of symbolic
execution. Symbolic execution uses real quantifier elim-
ination, which is doubly exponential [2], and can result
in timeouts.

4) Tool Failure: The solver encountered an expression that it
could not automatically symbolically execute (e.g., ODE
with a square roots on the right hand side).

20 Outcome
Tool Failure
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Fig. 2. Outcomes of autoformalization by GPT 40, GPT-4.1 and 03, with
zero-shot and multi-shot prompting.
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Fig. 3. Problem outcome by model.

Fig.2 shows the outcome. The autoformalization system is
sampled five times independently with temperature 1, and the
best outcome is reported (where tool failure and solver timeout
are considered better than failure). For each sample, the LLM
is given three chances to repair syntax if the KeYmaera X
parser reported an error. We evaluate two different prompts,
one using few-shot prompting considering four examples
(multi-shot) and another one without examples (zero-shot).

GPT 4o without few-shot prompting fails on every bench-
mark. Few-shot prompting significantly improves performance
for all models. With few-shot prompting 03 has a success
rate of 70%, which is higher than GPT 4.1’s 45% and GPT
40’s 20%. Our results support that the improvements and the
introduction of reasoning LLM models significantly increase
their success rate on mathematical tasks, enabling strong
performance in the autoformalization of hybrid games.

VI. DISCUSSION

Fig.3 shows the outcome of each problem by model. We
can observe that models found the same problems hard.
There are six problems that no model solves. For these, the
best performing model produces a formalization that could
potentially be correct but is too complex for the checker to
verify. The problems can be classified into three groups that
explain where their complexity arises from.



1) Optimization Problems: Problem 5 and 20.
2) Non-polynomial continuous dynamics: Problem 8 and 9.
3) Complicated dynamics: Problem 13 and 15.

The first category, for example, includes problem 5, which is
about identifying the launch angle of a boat that minimizes
drift, modeled by adversarial Angel trying to pick a better
angle than Demon, who must set the optimal angle to win. The
interplay of the two players leads to combinatorial branching
over possible sequence of events, while continuous dynamics
occur under constraints preventing control blocking. These
constraints make symbolic reasoning about the differential
equations particularly computationally expensive.

An example of the second category is problem 8, which is
about drones arranged in an equilateral triangle that cyclically
pursue each other with constant radial velocity, collapsing
inwards in increasingly rapid revolutions, till they crash. Their
dynamics, often modeled with a non-polynomial square root
expression on the right side of an ODE, cannot be handled
automatically by the tool. Problem 13 is an example from
the third category. It has three phases of dynamics, including
one where acceleration has a continuous dependence on time.
Such a differential equation is more expensive to symbolically
evaluate, making a timeout the likely outcome.

Sometimes a problem fundamentally requires capabilities
that a solver lacks, and the solver must be extended. Other
times a difficult but crucial part of formalizing problems is
choosing the right abstractions and representations that let
proofs succeed. For the six failing problems, the solution likely
lies in a combination of these methods. The solver must be
extended to better automatically handle, for instance, non-
polynomial dynamics by using continuous invariant generation
[21]. Complementing this, the LLM should be guided to use
tricks like polar coordinates and auxiliary variables to rewrite
dynamics in friendlier forms, and to also provide checking
hints such as continuous invariants.

Unsolved benchmarks provide a roadmap for improvement
in both these directions. Additionally, the rapid improvement
in success rate displayed by better LLM models suggests that
autoformalization of hybrid games will continue to improve
with advancements in LLMs.

VII. FUTURE WORK

Beyond the broader adoption of formal methods in offline
controller design, CPS model autoformalization enables a new
class of applications, where autonomous systems autoformal-
ize unfamiliar situations they face in the open world and
derive formally justified control decisions to respond to them.
For such applications, the input to autoformalization would
be vision and sensor data rather than a natural language
description. LLM autoformalization from such multimodal
input data provides an interesting future research direction.
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