
Online Verification of Commutativity
Aditi Kabra

Carnegie Mellon University

Pittsburgh, PA, USA

akabra@cs.cmu.edu

Dietrich Geisler

Cornell University

Ithaca, NY, USA

dag368@cornell.edu

Adrian Sampson

Cornell University

Ithaca, NY, USA

asampson@cs.cornell.edu

Abstract
Systems of transformations arise in many programming sys-

tems, such as in graphs of implicit type conversion functions.

It is important to ensure that these diagrams commute: that

composing any path of transformations from the same source

to the same destination yields the same result. However, a

straightforward approach to verifying commutativity must

contend with cycles, and even so it runs in exponential time.

Previous work has shown how to verify commutativity in

the special case of acyclic diagrams in 𝑂 (|𝑉 |4 |𝐸 |2) time, but

this is a batch algorithm: the entire diagram must be known

ahead of time. We present an online algorithm that efficiently

verifies that a commutative diagram remains commutative

when adding a new edge. The new incremental algorithm

runs in 𝑂 (|𝑉 |2 (|𝐸 | + |𝑉 |)) time. For the case when check-

ing the equality of paths is expensive, we also present an

optimization that runs in 𝑂 (|𝑉 |4) time but reduces to the

minimum possible number of equality checks.We implement

the algorithms and compare them to batch baselines, and we

demonstrate their practical application in the compiler of a

domain-specific language for geometry types. To study the

algorithms’ scalability to large diagrams, we apply them to

discover discrepancies in currency conversion graphs.

CCS Concepts: • Theory of computation → Dynamic
graph algorithms; Program verification.

Keywords: commuting diagrams, automatic type conver-

sion, online verification

ACM Reference Format:
Aditi Kabra, Dietrich Geisler, and Adrian Sampson. 2020. Online Ver-

ification of Commutativity. In Proceedings of the 11th ACM SIGPLAN
International Workshop on Tools for Automatic Program Analysis
(TAPAS ’20), November 17, 2020, Virtual, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3427764.3428322

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

TAPAS ’20, November 17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8189-5/20/11. . . $15.00

https://doi.org/10.1145/3427764.3428322

1 Introduction
Many systems use diagrams: graphs where nodes are do-

mains and edges are transformation functions. A type system

with coercions, for example, corresponds to a graph whose

nodes are types and whose edges are coercions. Figure 1

illustrates an example in a simple language with units-of-

measure types [4]. In such a system, an important correctness

criterion is that the diagram commutes: when traversing the

graph from any start node to any end node, applying every

transformation along the path to any input value, the result is

the same output value independent of the path chosen between
the two nodes. With our coercion example, it is a problem if

casting to a supposedly equivalent type as an intermediate

step resulted in a different answer than a direct cast. Specif-

ically, given a variable x of type meters, applying the cast

(wugs) x can be done in two ways: either (wugs)(feet) x or

(wugs)(miles) x. Which path is taken depends on the com-

piler; we would like the choice of paths to be semantically

equivalent so the compiler is free to make a choice.

This paper is about efficiently checking commutativity

in diagrams that arise in real systems. We assume a simple

equivalence checker for individual transformation functions:

in our type system example, for instance, it is possible to

check transformation equivalence by comparing the conver-

sion factors. Our aim is to analyze the graph of transforma-

tions and minimize the number of times we need to perform

an equivalence check. Since diagrams may change over time

in real systems, as new conversions are added, and verify-

ing the entire system from scratch may be computationally

expensive, we want an online method that only checks the

impact of new edges. In Figure 1, for example, a run-time

system can catch the point where the programmer adds a

bad conversion definition by verifying each new conversion

edge as it is created.

Efficient commutativity checking is not trivial. The pres-

ence of cycles implies a potentially infinite number of paths..

Further, naïvely checking if all path pairs that begin and

end at the same node in a given diagram commute could

require a number of function equality checks that grow as

factorial in the number of nodes, because a path consists

of an ordering of nodes. Previous work [5] has identified

an 𝑂 (|𝐸 |2 |𝑉 |4) algorithm to verify that a complete acyclic

diagram commutes; however, it addresses neither online ad-

dition nor cyclic diagrams.

For verifying commutativity over online addition, we iden-

tify two key insights. First, when a new edge is added, only

https://doi.org/10.1145/3427764.3428322
https://doi.org/10.1145/3427764.3428322

TAPAS ’20, November 17, 2020, Virtual, USA Aditi Kabra, Dietrich Geisler, and Adrian Sampson

var x : meters = 1;
define foot:

1 meter = 3.28 feet;
define miles:

1 meter = 0.000621 miles;
define wugs:

1 mile = 10000 wugs;
1 foot = 10 wugs;

var y : wugs = (wugs) x;

(a)A sample programwith user defined type conversion.

𝑚𝑒𝑡𝑒𝑟𝑠

𝑓 𝑒𝑒𝑡 𝑚𝑖𝑙𝑒𝑠

𝑤𝑢𝑔𝑠

×3.28 ×6.21 × 10−4

×10
×104

×32.8 ×6.21

(b) Diagram for the type conversions in the program.

Figure 1. In this sample program, the user implicitly defines

two ways to cast variable a frommeters to the new unit wugs.

The definitions are different, and a compiler performing

implicit conversion would not know which to choose.

one path per source and sink pair needs to be checked against

the existing commutative diagram. Because the diagram com-

mutes, all the paths between a given source and sink are

equal and a representative to check against can arbitrarily

be chosen. This leads to an 𝑂 (|𝑉 |2 (|𝐸 | + |𝑉 |)) algorithm to

verify a diagram remains commutative over the course of

online addition, assuming an oracle to check the equality of

functions. The algorithm makes an asymptotically optimal

number of calls to the oracle.

Second, there is a single rule that places a partial, transi-

tive ordering on paths indicating the amount of information

they contain about other paths. This insight yields a greedy

𝑂 (|𝑉 |4) optimization step that results in the number of ora-

cle calls being exactly minimal. The optimization is critical

when equality checking is expensive.

We evaluate our algorithms against random graphs and

use them in two case studies. First, we use our algorithm

in the domain specific geometry type language Gator [2]
to ensure that user defined transformations between spaces

stay consistent. Second, we use our algorithm to identify

inefficiencies in a currency conversion graph. We empirically

compare our solution to three baseline implementations: a

naïve cycle-sensitive all-pairs check, a check for all path

pairs that involve the new edge, and an algorithm suggested

by previous work to solve the batch version of the problem

for acyclic diagrams. Our proposed algorithms run orders of

magnitude faster than the baseline implementations.

2 Formal Problem Setup and Terminology
We start by formalizing the notion of a diagram, drawing

terminology from the previous acyclic work by Murota [5].

Notation. We start with a directed graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 corresponds to sets of elements and edges (𝑢, 𝑣)
in 𝐸 correspond to functions that maps elements of 𝑢 to

elements in 𝑣 . These functions form a semigroup F , where
multiplication is function composition. A semigroup consists

of a set and an associative binary operation, which we use to

capture function composition. The correspondence between

edges and functions is stored as a mapping 𝑓 : 𝐸 → 𝐹 , where

𝑓 maps each edge to the function it represents.

A path is a sequence of edges. The edge-to-function map-

ping 𝑓 can be naturally extended to paths: if path 𝑝=𝑒1; · · · ; 𝑒𝑛
then 𝑓 (𝑝) = 𝑓 (𝑒1); 𝑓 (𝑒2); · · · ; 𝑓 (𝑒𝑛). We write 𝜕(𝑝)+ for 𝑝’s
start node, 𝜕(𝑝)− for its end node, and 𝜕(𝑝) to denote the

pair (𝜕(𝑝)+, 𝜕(𝑝)−).
A pair of paths 𝑝1 and 𝑝2 is said to parallel iff their terminal

nodes are the same, i.e., 𝜕(𝑝1) = 𝜕(𝑝2). 𝜕, 𝜕+ and 𝜕− are

extended to apply to parallel pairs. For parallel pair 𝜙 = (𝑝1,

𝑝2), 𝜕(𝜙) = 𝜕(𝑝1) = 𝜕(𝑝2) = (𝜕(𝜙)+, 𝜕(𝜙)−).
Let R𝑎𝑙𝑙 be the set of all parallel pairs of paths in a given di-

agram. The diagram commutes iff ∀(𝑝1, 𝑝2) ∈ R𝑎𝑙𝑙 , 𝑓 (𝑝1) =
𝑓 (𝑝2); that is, the composition of maps along any path con-

necting any pair 𝑢 to 𝑣 is independent of path choice.

Problems. The Online addition problem, given a com-

muting diagram and a new edge, returns whether the di-

agram commutes. Checking function equality is a domain

specific, potentially hard problem, dependent on the nature

of the graph. For example, in our case study in graphics pro-

gramming (see Section 5.1), edges are matrices and nodes

are vector spaces, so function composition uses matrix multi-

plication and equivalence checking simply compares matrix

values. We therefore assume some oracle for checking trans-

formation function equivalence that will vary by domain.

We therefore collapse the Online addition problem to the

Verification set problem; we solve the latter and assume

an oracle with the results to produce the former. The latter,

when given a diagram and a new edge, returns the set of

parallel pairs of paths, such that if and only if the members

in each pair have function equivalence, then the new graph

must commute. The output to the Online addition prob-

lem can then be obtained as whether function equivalence

checking for all pairs succeeds.

The algorithms in this paper assume that the function

equivalence oracle is reflexive, symmetric, and transitive.

Online Verification of Commutativity TAPAS ’20, November 17, 2020, Virtual, USA

3 Baseline Algorithms
To examine the efficacy of our proposed solution to the Ver-

ification set problem, we compare it to some potential

alternatives. Specifically, we examine a naïve factorial al-

gorithm, a slightly less naïve factorial algorithm which we

identify to be a two-flip tolerant path search, and Murota’s

previous batch solution [5].

3.1 Naïve Baseline Algorithm
Our first goal is to develop a baseline (exponential) algorithm

that can reason about cycles without producing an infinite

set of paths. This algorithm will first pare the structure of

the graph down to remove cycles, extract the pairs of paths

in the graph, and finally reason about each pair to check

commutativity. This results in two components C and Q: the
cycle verification pairs and acyclic parallel pairs, respectively.

We start with the set of all parallel pairs in the diagram.

We pare it down to be finite by handling cycles: using a

procedure like Johnson’s algorithm [3], we find all simple

cycles in the diagram. We create a cycle verification set, C,
and verify for each cycle that a single traversal is equal to

the identity function by adding (𝑣 → 𝑣, 1) for each node

v in the cycle to C. Here, 𝑣 → 𝑣 is a simple cycle starting

and ending at 𝑣 , 1 is the identity function, and these must be

verified to be equal to each other.

We then create a set P of all the paths in the diagram with

no cycles, and filter the set P ×P, excluding pairs where the
paths begin or end on different nodes, or are identical, to get

the set of all cycle-free parallel pairs Q. After verifying C, it
is sufficient to verify only Q (as opposed to all pairs) because

cycles must now be the identity, so for any pair in the set of

all parallel paths, any instance of a cycle can be removed to

obtain an equivalent pair with shorter, cycle-free paths.

If the shorter pair has equal paths then the paths in the

original pair must also be equal to each other. It is therefore

safe to remove all pairs of paths with cycles, leaving only

parallel pairs where neither path has a cycle. P is finite,

bounded by 2 |𝑉 | , as a path without cycles is an ordering

on nodes, each node occurring at most once. |P × P|, and
consequently, |Q|, are also finite, bounded by 22 |𝑉 | . Thus the
algorithm terminates and returns a finite (if large) set.

3.2 Baseline Incremental Algorithm
For an incremental algorithm, we explore how the addition

of an edge can change the baseline to looking at a subset

of the graph rather than every pair of paths. In achieving

this, this second baseline essentially refines the results of the

naïve; a similar structure, but with a substantially reduced

set of paths to examine.

Like before, we start by creating a cycle verification set

C′, but includes only the simple cycles that pass through

the new edge. Then, instead of Q, the set of all non-cyclic
parallel pairs, the algorithm obtains its subset Q ′ consisting

of all non-cyclic parallel pairs such that exactly one path

in each pair passes through the new edge. To this end, the

algorithm performs a two-flip tolerant path search whose

output is passed into a path extraction algorithm; this search

finds all parallel pairs for which only one path includes the

new edge. The result of the path extraction algorithm to get

the final output Q ′ ∪ C′.
This narrowing can be done because the original diagram

commutes. Pairs where both paths do not involve the new

edge would remain equal (this would apply to cycles too;

cycles that do not pass through the new edge must be the

identity). Also, pairs where both paths involved the new edge

would have to be equal. To see why this is true, each path

could be thought of as consisting of the composition of three

segments. For path pair 𝑝 , and new edge from node 𝑆 to node

𝑇 , the first segment extends from 𝜕(𝑝)+ to 𝑆 , the second, the
new edge (𝑆,𝑇) itself, and the third, from 𝑇 to 𝜕(𝑝)−. The
new edge could only appear once because cycles have already

been dealt with so only pairs where the path includes the

new edge once need be checked. The first segment of both

pairs would have to be equal because they existed as parallel

pairs in the original diagram, and similarly the third segment

would also have to be equal. The second segment, consisting

of the same edge, would also have to be equal because the

equivalence oracle is reflexive. A composition of these three

equal components would be then be equal, since the oracle

would preserve transitivity of equality. We are left only with

parallel pairs where exactly one of the paths passes through

the new edge.

To resolve this algorithm fully, we will need to define the

specifics of the two-flip tolerant path search and how to

narrow down the results of this search into an actual set of

paths to verify.

Two flip tolerant path search. We use a “two-flip toler-

ant” path search from the source (𝑆) to the sink (𝑇) of the

new edge to identify the pairs of paths where exactly one

path includes the new edge.

In a normal directed graph path search, only forward

edges, i.e., edges that go outward from the current node

while executing the search are considered. A two flip path
consists of up to three phases: in the first phase, only back-

ward edges—pointing inward to the source of the search—are

accepted. In the second phase, only forward edges are ac-

cepted, and in the third phase, again only backward edges

are accepted. For a two flip tolerant path 𝑝 , let 𝑡1 (𝑝) map to

the first phase, 𝑡2 (𝑝), to the second, and 𝑡3 (𝑝), to the third.

The node between the first two phases we refer to as the first
flipping point, which has both edges pointing outward; simi-

larly, we refer to the node between the latter two phases as

the second flipping point, at which both edges point inwards.

We present the idea diagrammatically in Figure 2. Squiggly

arrows represent path phases (these are the composition of

zero or more edges, not a single edge). The new edge is

TAPAS ’20, November 17, 2020, Virtual, USA Aditi Kabra, Dietrich Geisler, and Adrian Sampson

𝑆 𝑇

𝐹1 𝐹2

new edge

𝑓1

𝑓2

𝑓3

Figure 2. Two flip tolerant path.

represented with a dashed arrow. Here, 𝑓1; 𝑓2; 𝑓3 is a two flip
path, and 𝑓1; (𝑆,𝑇); 𝑓3 is a new path created because of the

addition of (𝑆 ,𝑇) that forms a parallel pair with 𝑓2.

The two flip tolerant path search returns the set of all

paths between a given source and sink that have up to two

flips (paths with zero or one flip are also accepted).

Path extraction algorithm. Next, the path extraction al-
gorithm then transforms the output of the two flip path

search into the verification set, Q ′ ∪ C′. Given a set of two

flip tolerant paths from the new edge source to sink, the

algorithm outputs a set of pairs to verify.

Let the new edge added to the diagram be (𝑆,𝑇) and the

input set of paths, P. The algorithm processes every two flip

tolerant path 𝑝 in P case-wise to obtain pairs to add to the

output set.

• In the case where p has two flips, 𝑡1 (𝑝); (𝑆,𝑇); 𝑡3 (𝑝)
and 𝑡2 (𝑝) form a parallel pair.

• When p has only the first flip (which is to say, the third

phase of the path is missing), the parallel paths are

𝑡1 (𝑝); (𝑆,𝑇) and 𝑡2 (𝑝).
• Similarlywhen only the second flipping point is present

(so that there is no first phase), then the parallel pair

is (𝑆,𝑇); 𝑡3 (𝑝) and 𝑡2 (𝑝).
• Finally when no flipping points are present, there are

two possibilities: Either 𝑝 is a path from 𝑆 to 𝑇 , in

which case the parallel paths are simply the edge (𝑆,𝑇)
and 𝑝 , or 𝑝 is a path from 𝑇 to 𝑆 . In this case, we have

found a cycle, 𝑝; (𝑆,𝑇), to be paired with the identity

function. Like with the naïve algorithm, for every node

𝑣 in the cycle, we add the pair (𝑣 → 𝑣, 1), where 𝑣 → 𝑣

is the cycle 𝑝; (𝑆,𝑇) written to start and end at 𝑣 .

Resolving the IncrementalAlgorithm. We conclude our

discussion of this incremental algorithm by proving that the

result is the same as if we were running the naïve baseline

algorithm. This in turn shows that we have found a more

efficient algorithm to achieve the same result of providing a

set of paths which can be used to check commutativity.

Theorem 3.1. Perform the two-flip tolerant path search from
the source to sink node of the edge that is to be added followed,

and on the output, apply the path extraction algorithm. The
result is the set O = Q ′ ∪ C′ of new parallel pairs with exactly
one path passing through the new edge and neither paths con-
taining any cycles, and the set of simple cycles passing through
the new edge.

Proof. Every element in the output of the path extraction

algorithm was by construction an element of O. Every cycle

in C′ can be expressed as (𝑆,𝑇);𝑝 , and corresponds to the

input two flip tolerant path 𝑝 .

It remains to show that every new parallel pair 𝑝 in Q ′
corresponds to a two flip tolerant path. Let 𝜕(𝑝)+ = 𝐹1 and

𝜕(𝑝)− = 𝐹2. Only one path passes through (𝑆,𝑇). Let it be
called 𝑝1, and the other path, 𝑝2. The two flip tolerant path

from 𝑆 to 𝑇 can be constructed as follows: phase 1 is the

segment of 𝑝1 from 𝐹1 to 𝑆 , phase 2 is 𝑝2, and phase 3 is the

segment of 𝑝1 from 𝑇 to 𝐹2. Effectively, 𝐹1 corresponds to

the first flipping point, and 𝐹2, to the second. It is possible

that some of 𝐹1, 𝐹2, 𝑆 and 𝑇 coincide (e.g., 𝑝 starts at 𝑆 , i.e.,

𝐹1 = 𝑆), in which case the corresponding segments between

the coinciding nodes can be considered the identity; the

resultant path simply has fewer than two flips. □

Analysis. An upper bound on the number of pairs that

this algorithm returns is 𝑂 (|𝑉 |22 |𝑉 |), since two flip tolerant

paths are an ordering on nodes, each node appearing at most

once, followed by a selection of the flip points. In practice, the

algorithm significantly outperforms the naïve batch baseline

because it looks only at parallel pairs that involve the new

edge, which is usually a small subset of all parallel pairs.

Empirical results are presented in Section 6.

3.3 Optimal Batch Solution
Murota’s main result [5] solves the batch version of verifi-

cation set: given an acyclic diagram, it returns the minimal

set of equality checks that succeed if and only if the dia-

gram commutes. Murota describes an algorithm to find the

(|𝑉 |2 |𝐸 | bounded) minimal set of pairs that need be checked.

The approach in this algorithm, at a high level, is to define

a function that takes in a subset of pairs and returns the sub-

set of pairs whose equivalence is implied by the equivalence

of the pairs in the input set. Then the algorithm greedily

eliminates redundancies until a minimal set is reached.

A bilinking is defined to be a parallel pair that is disjoint

but for their terminal nodes. The set of all bilinkings is R0. In

an acyclic diagram, if all bilinkings are equal, all parallel pairs

must also be equal since any given pair can be expressed as

a composition of bilinkings.

Define 𝑟1 > 𝑟2 for bilinkings 𝑟1 = {𝑝1, 𝑞1}, 𝑟2= {𝑝2, 𝑞2)
∈ R0, if there exists a path 𝑝 such that 𝜕(𝑝) = 𝜕(𝑟1) and 𝑝

contains 𝑝2. Define ⟨⟩ as: ⟨𝑟 ⟩ = {𝑠 ∈ R0 |𝑟 > 𝑠}.
For bilinking 𝑠 , let 𝐹 (𝑠) be the vector in GF(2) |𝐸 | (where

GF(2) is the Galois field, that is, finite field of two elements)

representing the edges present in s (the 𝑛th dimension of

𝐹 (𝑠) is 1 if the corresponding edge is in 𝑠 , and 0 otherwise).

Online Verification of Commutativity TAPAS ’20, November 17, 2020, Virtual, USA

Result: Find a spanning set Rs = [𝑟1, ... ,𝑟𝑘].

Graph existingGraph

𝑅𝑠 ← {}

foreach node v in V do
subgraph←
existingGraph.extractReachableSection(v)

/* Get the portion of the graph that can

be reached starting from v. */

tree← createMinimumSpanningTree(subgraph)

excludedEdges = edges in subgraph - edges in tree

foreach edge e ∈ excludedEdges do
firstPath = tree.findPath(source: e.source, sink:

e.sink)

𝑅𝑠 .addElement((firstPath, e))

end
end
return 𝑅𝑠

Algorithm 1: Finding a spanning set of path pairs, as in

section 3.3.

Let this function be extended to sets, so that for some set

of bilinkings S, 𝐹 (S) = {𝐹 (𝑠) |𝑠 ∈ S}. A notion of linear

independence in this vector field exists.

For a set of bilinkings R, the closure function 𝑐𝑙 is defined
as: 𝑐𝑙 (R) = {𝑠 ∈ R0 |𝑠 is linearly dependent on 𝐹 (R)}. The
closure function on R captures all the pairs that can be made

by made by composing or “gluing together” the bilinkings in

R. Using these two functions, we define the function 𝜎 on a

set of bilinkingsR as𝜎 (R) = {𝑠 ∈ R0 |𝑠 ∈ 𝑐𝑙 (R∩⟨𝑠⟩)}. This is
the function used to capture all the pairs whose equivalence

is implied by the equivalence of pairs in R. We use 𝜎 to

iteratively check if a given pair is redundant. We eliminate

Bilinkings until we reach a minimum “spanning” subset.

Roughly, the algorithm proceeds by first efficiently find-

ing a spanning set of bilinkings (a subset whose verification

implies the verification of all bilinkings in the graph). It does

this, starting at every node, by finding the reachable sub-

section of the graph, and a spanning tree for the subsection.

From each edges in the reachable section that is not a part

of the tree, it generates a bilinking using the edge and a path

in the tree that is parallel to the edge (Algorithm 1).

With the spanning set thus initialized, it greedily tries to

remove each pair from the spanning set if the set remains

spanning even after removing the edge (Algorithm 2).

The proof of correctness can be found in Murota[5]. The

number of checks returned by the algorithm is at worst

𝑂 (|𝑉 |2 |𝐸 |). The overall run time of an optimized implemen-

tation is 𝑂 (|𝑉 |4 |𝐸 |2).

4 Solving the Online Addition Problem
We present a polynomial time solution to the verification

set problem. As in the online baseline algorithm, we do not

Result: Find a minimal spanning set of path pairs

(bilinkings) R.

Function 𝜎(input set S, spanning set Rs):
output← {}

for bilinking ∈ Rs do
smallerPairs← allShorterPieces(bilinking)

/* Get fragments that could build up
to the bilinking. Corresponds to
applying <> function. */

consideredPieces← smallerPairs ∩ S

/* Now see if bilinking can be built

from these pieces. */

/* Linear independence is in GF(2) as

in algorithm description. */
if linearlyDependent(consideredPieces,
bilinking) then

output.add(bilinking)

end
end
return output

R← Rs

for i=1 to K do
if 𝑟𝑖 ∈ 𝜎(R-𝑟𝑖) then

R← R-𝑟𝑖

end
end
return R

Algorithm 2: Finding a minimal spanning set, as de-

scribed in section 3.3.

concern ourselves with parallel pairs where neither or both

paths pass through the new edge.

The key observation allowing us to improve on the online

baseline is a result of Theorem 4.1 (which we expand on

later): for a given source and sink pair, only a single parallel

pair needs to be verified. It is straightforward to see that,

should our selected set of pairs and cycles passing through

the new edge be verified commutative, the entire diagram

must commute. Algorithm 3 uses this strategy of identifying

a parallel pair with exactly one path through the edge for

each (source, sink) pair.

The try block is executed at most𝑂 (|𝑉 |2) times, which is

also the bound on the number of pairs verified. This bound

is asymptotically tight, as can be seen in the case where the

graph contains 2𝑁 nodes along 𝑆 and𝑇 . Imagine dividing the

nodes into two groups of 𝑁 nodes each. Every node in group

1 has a forward edge to every node in group 2 and to 𝑆 . 𝑇

has a forward edge to every node in group 2. In this diagram,

when adding edge (𝑆,𝑇), 𝑁 2
paths need to be verified which

is polynomial in the total number of nodes, 2𝑁 + 2.

TAPAS ’20, November 17, 2020, Virtual, USA Aditi Kabra, Dietrich Geisler, and Adrian Sampson

Data: existing graph, new edge.

Result: Set of parallel pairs to verify.

Graph existingGraph; Edge newEdge;

parallelPairs← {}

for src in existingGraph.Nodes do
for snk in existingGraph do

try:
/* Use any standard path finding

algorithm such as BFS to find a
path in the existing graph from
the specified source to sink.
*/

Path pathWithNewEdge← FindPath(

sourceNode: src, sinkNode:

newEdge.Source) +

newEdge +

FindPath(sourceNode: newEdge.Sink,

sinkNode: snk)

if src == snk then
/* Assign the nullary path from

src to snk. */

pathInOldGraph← src

end
else

Path pathInOldGraph← FindPath(

sourceNode: src, sinkNode: snk)

end
parallelPairs.add((pathInOldGraph,

pathWithNewEdge))

catch PathFindingFailedException:
/* No comparable pairs from node

src to node snk that need to be
checked */

continue

end
end

end
return parallelPairs

Algorithm 3: Online polynomial time algorithm to find

parallel pair set.

If trying to optimize for path length (say, if composing

functions is expensive) then “find any path” can be replaced

with “find the shortest path.”

An efficient implementation of the algorithm can run in

𝑂 (|𝑉 |2 (|𝑉 | + |𝐸 |)) time, with space complexity not exceeding

the asymptotic 𝑂 (|𝑉 |2) bound on the output. In such an

implementation, path finding from a given source node to all

potential sink nodes could be done in a single 𝑂 (|𝑉 | + |𝐸 |)
breadth first search.

4.1 Optimization Step
In the case where equality checks are very expensive, we

begin by finding the minimal set of (source, sink) pairs such

that checking for these pairs logically implies having checked

the full diagram.

If Algorithm 3 were applied to the diagram shown in Fig-

ure 3 there would be redundancies in the output. It turns

out that verifying 𝑔2 = 𝑓2;𝑛;ℎ2 is sufficient to ensure the

diagram still commutes on the addition of 𝑛.

𝑆 𝑇

𝑃1 𝑃2

𝑄1 𝑄2

𝑔1

𝑓1

𝑓2

𝑔2

ℎ2

ℎ1

𝑙

𝑛

𝑚

Figure 3. Reduction rule. Each arrow represents a path,

where 𝑛 is the new edge being added. While Algorithm 3

returns two pairs for verification, one from 𝑃1 to 𝑃2 and the

other from 𝑄1 to 𝑄2, it actually suffices to just check a pair

from 𝑄1 to 𝑄2 as demonstrated in theorem 4.1.

Theorem 4.1. If parallel paths 𝑔2 = 𝑓2;𝑛;ℎ2 then it must be
that 𝑔1 = 𝑓1;𝑛;ℎ1.

Proof. We use the fact that 𝑓1=𝑙 ; 𝑓2 and ℎ1=ℎ2;𝑚.

𝑔2 = 𝑓2;𝑛;ℎ2 ⇒ 𝑙 ;𝑔2 = 𝑙 ; 𝑓2;𝑛;ℎ2

⇒ 𝑙 ;𝑔2;𝑚 = 𝑙 ; 𝑓2;𝑛;ℎ2;𝑚 ⇒ 𝑔1 = 𝑓1;𝑛;ℎ1

The proof holds if any of the paths used are the identity, e.g.,

if 𝑓1 is the identity so 𝑆 and 𝑃1 are the same node. □

We conclude that verifying a comparable pair of paths

with end points (𝑃1, 𝑃2) implies the verification of all path

pairs (𝑄1, 𝑄2) such that 𝑄1 is a successor of 𝑃1 and 𝑃2 is a

successor of 𝑄2. A successor 𝑆 to node 𝑁 is any node such

that there exists a path from 𝑁 to 𝑆 . Nodes are also their

own successors and predecessors. The rule effectively places

an ordering on the informativeness of path pairs based on

their terminal nodes.

Given that a set of path pairs are equal, supposewe attempt

to derive the proposition that a different parallel pair of paths

is equal with a step-by-step application of inference rules.

Under the assumption that edges are generic functions, and

no other information is available,F is a semi-group. The only

inference rules allowed are composition (given that 𝑓1 = 𝑓2,

it must be that 𝑔; 𝑓1 = 𝑔; 𝑓2) and replacement of one path by

a different, equal path (given 𝑓1 = 𝑓2 and 𝑔; 𝑓1 = ℎ; 𝑓1, it must

be true that 𝑔; 𝑓1 = ℎ; 𝑓2). Any permutation of the repeated

application of these two rules results in the “reduction rule”

already described; it is therefore the only rule that can be

used to reduce the set of path pairs to check.

That is to say, if verifying a comparable pair of paths with

end points (𝑃1, 𝑃2) implies the verification of a pair with

endpoints (𝑄1, 𝑄2), then it must be that 𝑄1 is a successor of

𝑃1 and 𝑃2 is a successor of 𝑄2.

Online Verification of Commutativity TAPAS ’20, November 17, 2020, Virtual, USA

Data: Existing graph, new edge.

Result: Set of parallel pairs to verify.

Graph existingGraph

Edge (S, T)

predecessors← predecessors of S in existingGraph

successors← successors of T in existingGraph

Graph terminalPairGraph← empty

for q ∈ successors do
for p ∈ predecessors do

terminalPairGraph.addNode((q, p))

for predecessor ∈ predecessors of q in
existingGraph do

for successor ∈ predecessors of p in
existingGraph do

terminalPairGraph.addEdge((predecessor,

successor))

end
end

end
end
verificationSet← {}

while terminalPairGraph.nodes not empty do
currentNode← terminalPairGraph.node

// an arbitrarily chosen node of

terminalPairGraph

while currentNode has predecessors do
currentNode← predecessorOfCurrentNode

// an arbitrarily chosen predecessor

of current Node

end
verificationSet.add(currentNode)

terminalPairGraph.removeAllSuccessors(currentNode)

end
return verificationSet

Algorithm 4:Minimal set finding algorithm.

Using this information it is possible to choose a minimal

subset of path pairs to verify, as in Algorithm 4. To summarize

this algorithm conceptually, we start by constructing a graph

with a node for each possible (source, sink) pair in the graph:

each node then represents a possible choice for parallel pair

endpoint pairs. Edges are drawn from node (𝑃1, 𝑃2) to (𝑄1,

𝑄2) if 𝑄1 is a successor of 𝑃1 and 𝑃2 is a successor of 𝑄2.

We greedily search for the smallest set of nodes from which

the entire graph would be reachable. The idea is to look for

“roots” in the graph that have to be included in the ultimate

verification set because they have no predecessor in the

graph and cannot be verified “through” the verification of

some other pair. Then all the successors whose verification

is implied by the roots are eliminated.

At the end of the greedy graph reduction we are left with

the unique set of root nodes. The only way to reduce the set

of parallel pairs is to apply the reduction rule of theorem 4.1,

but all the ways in which the rule is applicable was already

captured in the edges of the graph. The leftover set has no

edges and no scope for further reduction.

Also, the verification of the parallel pairs returned in the

algorithm implies that the output of the previous algorithm

must commute and that the entire diagram must commute.

The run time of the first step is 𝑂 (|𝑉 |4), and that of the

second step is 𝑂 (|𝑉 |), so that the overall bound is 𝑂 (|𝑉 |4).
Space complexity remains 𝑂 (|𝑉 |2).

5 Case Studies
To demonstrate our algorithms applied to a real world situa-

tion, we search for inconsistencies in diagrams of geometry

transformations, and in a diagram of the exchange rate be-

tween currencies. Each of these applications use commuta-

tive diagrams, and the commutative nature of each is neces-

sary to reason about some form of correctness. We explore

these examples with the intent of showing that the algo-

rithms discussed apply to realistic settings and potentially

identify real-world examples of incorrect behavior.

5.1 Gator
Gator is a domain specific language designed around ge-

ometry types, which are used to describe properties and

transformations of geometric objects [2]. A key feature of

Gator is in expressions, which insert code to automatically

transform between two geometry types. For example, given a

point p represented in 2-dimensional Cartesian coordinates

(which has type cart2), we can transform this point into

polar coordinates using the expression p in polar. These

in expressions create a structure of commutative diagrams,

allowing use as introduced in Section 1.

Specifically, Gator introduces transformations between

reference frames, which are the geometry equivalent of trans-

forming between linear algebra basis vectors. Each edge on

our transformation graph is thus a matrix, with composition

of edges as matrix multiplication and an oracle checking

matrix equality (up to a rounding error 𝜖).

There are several examples of reasonably complicated

transformation graphs that we can pick from. Gator includes

graphics examples as part of its examples package, all of

which are in the Gator paper; for this evaluation, we looked

at the phong, reflection, and shadow map examples.

We implemented a system for interfacing between the

optimal set path checker (Algorithm 4) in the open-source

implementation of Gator. The system was tested with inten-

tional bugs, of which it found them all, although no “real”

bugs were found. The graphs used were of size 5 or less;

for graphs of this size, the checker was able to run in real

time with no noticeable loss of frames. Since the program is

TAPAS ’20, November 17, 2020, Virtual, USA Aditi Kabra, Dietrich Geisler, and Adrian Sampson

running at 60 frames per second, the checker was running

at a rate faster than .01 seconds.

5.2 Currency Graph
We imagine a units-of-measure type system as being an inter-

esting application of concurrency graphs; however, to make

this more interesting and scale nicely to large graphs with

existing data, we focus on the specific unit of currencies.

Consider a diagram with nodes as currencies and a directed

edge being the conversion rate from its source node’s cur-

rency to its sink node’s currency. Since the exchange rate of

money from any given base currency to a target currency

can be expected to be the same regardless of which interme-

diate currency transformations are used, this diagram should

commute.

Using a web API
1
for currency data, we built the fully

connected diagram of exchange rates between 32 currencies

on a given day. To ensure that it indeed commuted, we started

with an empty diagram, and added in edges one by one.

Before the addition of each edge, we used the algorithms

(Algorithm 3 and Algorithm 4, the online polynomial and

online minimal set algorithms, respectively) to ensure the

addition of a new edge did not introduce inconsistencies in

the existing diagram. If a new edge was problematic, the

algorithms returned an example inconsistent pair that would

arise from the addition of the edge. The pair would consist

of two currency transformation sequences with the same

source currency and ultimate destination currency, but with

different effective exchange rates values, as computed by

taking the product of all the exchange rates encountered

through the chain.

We allowed an “error tolerance” so that differences re-

ported would not be the trivial consequences of a floating

point error. However, this relaxation of the equality oracle

into imprecision meant that the mathematical reasoning that

allow the algorithms to remove redundant path checks no

longer applied. For instance, composing a new function with

two approximately equal functions does not lead to equal

results, so Theorem 4.1 fails with this approximate equality.

When the algorithms reported no inconsistencies, it was still

possible that the graph possessed inconsistencies above the

given threshold and did not commute. Nonetheless, both

algorithms were effective in catching inconsistencies. Algo-

rithm 3 started finding inconsistencies at error tolerances

to the order of 10−3, and Algorithm 4, which makes more

invalid redundant path check removals, at error tolerances

to the order of 10−7.
Averaging over evaluation for the first 30 days of 2020,

building and verifying a diagram to completion (inclusive

of the time required by network calls) took 243±19 seconds
using Algorithm 4, and in 133±13 seconds with Algorithm 3.

1
https://exchangeratesapi.io

Table 1. Computation time for 9-node graph of density 0.4,

averaged over ten runs.

Algorithm Average seconds of computation

Naïve baseline 0.77

Two Flip tolerant 0.075

Batch algorithm 7.55

Algorithm 3 0.0038

Algorithm 4 0.00086

Table 2.Output size for 9 node graph of density 0.4, averaged
over ten runs.

Algorithm Average number of output pairs

Naïve baseline 39754.9

Two Flip tolerant 748.9

Batch algorithm 23

Algorithm 3 78.3

Algorithm 4 1

For this large of a graph and data set, these times are rea-

sonable and show these algorithms can be used in a realistic

setting. Finding actual inconsistencies further shows the

value of using these algorithms and commutative diagrams

in the real world.

6 Evaluation
We compare performance of the following path checking

algorithms: (1) the naïve baseline, (2) the less naïve two-flip

baseline, (3) the batch baseline, (4) Algorithm 3, the non-

minimal polynomial-time algorithm, and (5) Algorithm 4, the

minimal set finding algorithm. The two metrics we evaluate

are time for response and size of response set (smaller sets—

tighter output results—would mean less calls to the oracle).

We use randomly generated graphs of varying size: given

a graph and a new edge, we time how long it takes for an

algorithm to return the set of pairs that need to be verified.

All computations were performed on a MacBook Pro 2015,

2.9 GHz dual-core Intel Core i5.

6.1 Comparison of Algorithm Time Cost
The average time taken by each algorithm over the course of

10 runs over randomly generated graphs with 9 nodes and

32 edges is listed in Table 1.

The naïve baseline performs poorly, taking well over a

thousand seconds for even small graphs of 10 nodes. While

the batch algorithm improves on this, it still does not scale

verywell, with computation for a graphwith 14 nodes and 0.4

density taking hours. Our implementation does not memoize

the construction of the vector and matrix representation

of paths in GF(2); profiling indicates that this construction

Online Verification of Commutativity TAPAS ’20, November 17, 2020, Virtual, USA

0 50 100 150 200 250

Number of Nodes

0.00

0.05

0.10

0.15

0.20

0.25

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

s)

density 0.1

density 0.5

density 0.9

(a) Algorithm 4.

0 50 100 150 200 250

Number of Nodes

0

2

4

6

8

10

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

s)

density 0.1

density 0.5

density 0.9

(b) Algorithm 3.

1 2 3 4 5 6 7

Number of Nodes

0

10

20

30

40

50

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

s)

density 0.1

density 0.5

density 0.9

(c) Naive baseline.

1 2 3 4 5 6 7 8 9

Number of Nodes

0

5

10

15

20

25

30

35

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

s)

density 0.1

density 0.5

density 0.9

(d) Two flip tolerant baseline.

2 3 4 5 6 7 8 9 10

Number of Nodes

0

10

20

30

40

50

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

s)

density 0.1

density 0.25

density 0.4

(e) Batch algorithm baseline.

Figure 4. Running time for various algorithms as input graph size and density scale.

is a major factor in the high time cost for this algorithm.

Algorithm 3 performs only slightly better than the batch

algorithm. Surprisingly, the optimal set algorithm cuts time

cost by several orders of magnitude, and runs in milliseconds

for small graphs. All implementations are sensitive to density,

performing better when density is low.

6.2 Scaling of Time with Input Size
Figure 4 shows that the algorithms’ time scales with size, as

expected. Both Algorithm 4 and Algorithm 3 exhibit graphs

that are polynomial in appearance. The naïve baseline as

well as the two flip tolerant baseline display quick growth.

The batch algorithm also grows fast, though not as much as

the online checking baselines.

We define density to be the ratio of the number of edges

in the graph to the total possible number of edges (which

is |𝑉 |2, where |𝑉 | is the number of nodes). Run time relates

to the density of edges in the input graph. The degree of

the effect differs with the algorithms, as Figure 4 shows.

Generally, denser graphs entail longer computation time.

For the batch algorithm we use lower densities since the

input graph must be acyclic. This puts an upper bound on

density that approaches 0.5 in large graphs.

6.3 Variance
The periodic spikes in Figure 4a are striking. We plot the

spread of results in Figure 5a to understand what is happen-

ing. Grey points are the results of evaluation on individual

points, and error bars show standard deviation. The black

curve traces the mean. We find Algorithm 4 has outliers

about two standard deviation above the mean responsible

for the spikes in the average. The outliers themselves fol-

low a polynomial curve, appearing almost periodically. We

have not yet identified the cause of the behavior. Figure 5

depicts the situation for Algorithm 3, where no such effect

is observed.

6.4 Size of Output
Output size is a metric of interest, should the equality check-

ing oracle be expensive. Table 2, summarizes the number of

output pairs that the algorithms returned on average over

10 runs, for graphs with 9 nodes and 32 edges. These results

are essentially as expected, although it is interesting to note

that Algorithm 3 produces around triple the number of pairs

compared to the batch algorithm. Also note that Algorithm

4 produces the minimal number of paths, showing why it is

the minimal set algorithm.

7 Related Work
Section 3.3 describes Murota’s solution to efficiently finding

the minimal set of path pairs that need to be compared to

TAPAS ’20, November 17, 2020, Virtual, USA Aditi Kabra, Dietrich Geisler, and Adrian Sampson

0 50 100 150 200 250

Number of Nodes

0.0

0.1

0.2

0.3

0.4

0.5

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

s)

density 0.5

(a) Algorithm 4.

0 50 100 150 200 250

Number of Nodes

0

2

4

6

8

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

s)

density 0.5

(b) Algorithm 3.

Figure 5. Spreads of algorithm running times.

check if a given acyclic graph commutes [5]. We did not find

any other work that solves the question of verifying that

diagrams commute. However, the question of commuting

does come up in programming languages with implicit type

conversion. Gator [2], as described in Section 5.1, supports

automatic type conversion between geometry types. The

language implements some restrictions to eliminate obvious

cases of non-commuting graphs, but does not verify that de-

fined graphs commute, allowing scope for non-commuting

graph definitions. Frink [1] is a language that supports auto-

matic conversion between units and infinite precision float-

ing point numbers. It does not appear to support the implicit

definition of conversion between units but if extended to do

so, would need to contend with the problem of commuting

graphs. The same is true for F# which has support for units

of measure [4] and Ada’s GNAT compiler [6].

8 Conclusion
Being able to verify if diagrams commute allows a compiler

to make deterministic automatic type conversions and can

catch inconsistencies of definition in a program with user

defined conversions. In this paper, we have presented verifi-

cation algorithms that efficiently compute the set of paths

that would equal to each other if and only if the diagram

would still commute after addition of a new edge.

Integrating conversion consistency checks into widely

used languages such as Scala could provide a lot of value to

the program. Since Scala and several other languages provide

automatic conversions between types, it seems important

to ensure that the choice of which path to take (an appar-

ently arbitrary choice) does not effect the behavior of the

program. Having an algorithm to ensure the commutativity

of the resulting diagrams can ensure that behavior is correct

and help prevent semantic confusion or errors when using

such features. More engineering work still remains to imple-

ment this feature in a language such as Scala, but this paper

provides the algorithms necessary to explore a solution.

References
[1] Frink. http://frinklang.org/#Features. Accessed: 2020-08-10.
[2] Dietrich Geisler, Irene Yoon, Aditi Kabra, Horace He, Yinnon Sanders,

and Adrian Sampson. Geometry types for graphics programming. In

OOPSLA, 2020.
[3] Donald B. Johnson. Finding all the elementary circuits of a directed

graph. SIAM J. Comput., 4:77–84, 1975.
[4] Andrew Kennedy. Types for units-of-measure: Theory and practice.

In Proceedings of the Third Summer School Conference on Central Euro-
pean Functional Programming School, CEFP’09, page 268–305, Berlin,
Heidelberg, 2009. Springer-Verlag.

[5] Kazuo Murota. Homotopy base of an acyclic graph—a combinatorial

analysis of commutative diagrams by means of preordered matroid.

Discrete Appl. Math., 17(1–2):135–155, May 1987.

[6] Edmond Schonberg and Vincent Pucci. Implementation of a simple

dimensionality checking system in ada 2012. In Proceedings of the 2012
ACM Conference on High Integrity Language Technology, HILT ’12, page

35–42, New York, NY, USA, 2012. Association for Computing Machinery.

http://frinklang.org/#Features

	Abstract
	1 Introduction
	2 Formal Problem Setup and Terminology
	3 Baseline Algorithms
	3.1 Naïve Baseline Algorithm
	3.2 Baseline Incremental Algorithm
	3.3 Optimal Batch Solution

	4 Solving the Online Addition Problem
	4.1 Optimization Step

	5 Case Studies
	5.1 Gator
	5.2 Currency Graph

	6 Evaluation
	6.1 Comparison of Algorithm Time Cost
	6.2 Scaling of Time with Input Size
	6.3 Variance
	6.4 Size of Output

	7 Related Work
	8 Conclusion
	References

