
Train Verification and Control Envelope
Synthesis

1

Aditi Kabra

Computer Science Department,
Carnegie Mellon University

KIT 06/2023

Cyber Physical Systems

2

2

Overview

Design Verified Train Protection
System Case Study

Techniques

Results

Generalization
Automation

Control Envelope Synthesis

Theoretical
Characterization by

Hybrid Games

Solution Computation by
Refinement

Benchmarks

Human Effort Intensive

Part 1 Part 2

Towards

3

Pt 1: Verified Train Controllers for the Federal
Railroad Administration Train Kinematics

Model:
Balancing Competing Brake and Track Forces

4

Aditi Kabra Stefan Mitsch André Platzer

EMSOFT 2022

Supported by FRA contract
number 693JJ620C000025

5

End of movement authority: the train must
stop by this point

Train Control: Complicated

6

e

End of movement authority: the train must
stop by this point

Train Control: Complicated

6

decreasesuphill

decreases

Gravity

Resistance

Acceleration

e

End of movement authority: the train must
stop by this point

Train Control: Complicated

6

decreasesuphill

decreases

increases

Gravity

Resistance

Acceleration

e

changes

End of movement authority: the train must
stop by this point

Train Control: Complicated

6

decreasesuphill

decreases

increases

Gravity

Resistance

Acceleration

e

Time since brake
application

Air brake
acceleration

changes

??

Formal Verification

7

Formal Model

Infinitely many possibilities
checked once and for all

Proving in KeYmaera X Theorem Prover

2545 lines of proof tactic

Complete FRA
Model[1]

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad
Administration, 2009.

Formal Verification

7

Formal Model

Infinitely many possibilities
checked once and for all

Proving in KeYmaera X Theorem Prover

2545 lines of proof tactic

Complete FRA
Model[1]

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad
Administration, 2009.

Generalizable

Approach: Impact

8
[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad
Administration, 2009.

Verified
controller

Start braking

Train stops

End of movement authority
Baseline[1]

Approach: Impact

8
[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad
Administration, 2009.

Verified
controller

Start braking

Train stops

End of movement authority
Baseline[1]

Overview
Part 1: Train Verification

• Introduction

• Techniques

• Controller

• Evaluation

• Summary

9

Background: Dynamics

10

Rate of change of train
position is velocity

Rate of change of train velocity is
acceleration

Background: Dynamics

10

Rate of change of train
position is velocity

Rate of change of train velocity is
acceleration

Air brakes ramp up

Unknown functions: slope, curve

11

??

Unknown functions: slope, curve

11

Unknown function: replace with
worst case value !"

Unknown function: replace with worst
case value 0

!" 0

Use worst case value …
??

Unknown functions: slope, curve

12

… with improving estimates.

Other Proof Techniques
Taylor PolynomialCircular Dependencies

Ghost Trains

Problem: Davis resistance integrates poorly.

Solution: Taylor polynomial approximation.

Problem: Circular dependence while estimating worst
case values.

Solution: Bootstrap cycle with naive values, then
iterate.

Problem: Intermediate reasoning steps transcendental.

Solution: Reason about as ODE (here represents dynamics
of a “ghost” train).

13

How large will
velocity get at worst?

How large will
slope get at worst

Worst case velocity
(improved)

Worst case slope
(improved)

Worst case velocity

Worst case slope
(baseline)

≥

Proof

Overview

• Introduction

• Techniques

• Controller

• Evaluation

• Summary

17

Control Structure
Control code runs in a loop with some latency T (in our case, to the
order of a second).

18

{
 t:=0;
 {
 { ? (- > stoppingDistance(, ,));

 :=*; ?(-);
 :=0; :=0;
 }
 { :=- ; := }

 }

 { = , = ,

 & &
 }
}*

 # $ $ % &'
&('!&) ≤ &(≤ &!&)
!' &'
∪
&('!&) !' !$;

 $′ % %′ &(+ max(&', &'!&)) + &"($) + &*($) + &+(%) &′ ' = !', ,′ = 1
, ≤ - % ≥ 0

End of movement authority: the train
must stop by this point

Theorem "WP2/slopecurve_offset_airbrakes_1"

Definitions
 /* Acceleration coefficients. */
 Real a0; /* Strict upper bound on maximal constant acceleration. */
 Real a1; /* Accelerations that are linear in velocity. */
 Real a2; /* Accelerations that are quadratic in velocity. */
 Real b0; /* Maximal constant braking force (positive). */
 Real crvDer; /* Coefficient in derivative of horizontal curve. */

 /* Situational track setup */
 Real maxSlope; /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */
 Real T; /* Time control loop period / system reaction time. */
 Real slopeAcc(Real trainPos); /* Slope acceleration map (where trainPos is measured along the
sloped track rather than along flat land). a_c in the paper. */
 Real end; /* End of movement authority. e in the paper. */
 Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is
measured along the sloped track rather than along flat land). a_c in the paper. */
 Real maxVertCur; /* Maximal rate of change of slope (vertical curvature). h_{max} in the
paper. */
 Real Rmin; /* Bound on friction due to horizontal curve (resistance at min radius). m_c in
the paper. */
 Real Apb; /* maximum penalty brake acceleration */
 Real buildupThreshold; /* Time offset until pressure brakes can be applied. */
 Real pressureChangeRate; /* (Linear) rate of increase in acceleration due to air brakes when train
is applying them. */

 /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */
 Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T;

 /* Maximum acceleration due to slope. */
 Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope);

 /* Maximum acceleration due to curve (negative since curves decelerate). */
 Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0);

 /* The train will stop in at most this much distance if braking from speed vel. */
 Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)),
 (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2);

 /* The train will stop in at most this much distance if it accelerates for a time period and then brakes.
*/
 Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel,
slopeAcc(trainPos), curvature(trainPos)), 0) + upperDist(vel, slopeAcc(trainPos), curvature(trainPos));

 /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the
paper. */
 Real resistance(Real vel) = a1*vel + a2*vel^2;

 /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity
vel from position trainPos. */
 Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) +
curvature(trainPos);

 /* Upper bound on new velocity (increased for one time period). */
 Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel
 + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel))
 + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T;

 /* Upper bound on distance covered for one time period under acceleration. */
 Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*(
 a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel))
 + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2;

 /* Time till pipe pressure is at maximum given current pressure. */
 Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate;

 /* Utility functions for absolute values: True iff |x|<=y */
 Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y);

 /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical
curve and curve derivatives. */
 Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x')
 & \forall x' \forall x absLessEq((curvature(x))', crvDer*x');

 /* Assumptions on constants. */
 Bool conditionsOnConsts() <->
 a0>0 /* Strict upper bound on maximal constant acceleration, must be
positive. */
 & b0>0 /* Maximal constant braking force (positive). */
 & a1<0 /* Accelerations that are linear in velocity. */
 & a2<0 /* Accelerations that are quadratic in velocity. */
 & maxSlope>=0 /* Greatest allowed acceleration due to slope gradient. */
 & T>0 /* Time control loop period / system reaction time. */
 & b0-maxSlope>0 /* Brakes more powerful than effect of slope. */
 & a0-maxSlope>0 /* Engine more powerful than effect of slope. */
 & a0-maxSlope+Rmin>0 /* Engine more powerful than curve and slope. */
 & maxVertCur>=0 /* Maximal rate of change of slope (vertical curvature). */
 & Rmin<=0 /* Bound on friction due to horizontal curve (resistance at min
radius). */
 & crvDer>=0 /* Coefficient in derivative of horizontal curve. */
 & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0) /* Track is built correctly:
all curvatures along actual track satisfy bound on friction due to curve. */
 & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope) /* Track is built correctly: all slope
accelerations along actual track are within maxSlope. */
 & Apb<0 /* Maximally engaged air pressure brakes provide negative
acceleration. */
 & buildupThreshold>0 /* Air pressure brake propagation time is some positive
numbers. */
 & pressureChangeRate<0; /* The rate at which acceleration provided by the
pressure brakes increases. */
End.

ProgramVariables
 Real trainPos; /* The position of the train. */
 Real vel; /* The speed of the train. */
 Real trainAcc; /* Acceleration/deceleration control, i.e., engine acceleration and braking. */
 Real buildup; /* How long pipe pressure has been building up. */
 Real brakeSlope; /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */
 Real airBrake; /* Acceleration due to current pipe pressure. */
End.

Problem
 end-trainPos>brakingDistance(vel, 0)
 & conditionsOnConsts()
 & limitedTrackChange()
 & vel>=0
 & brakeSlope=0
 & airBrake=0
 ->
 [
 {
 t:=0;
 {{?(end-trainPos > stoppingDistance(trainPos, vel));
 trainAcc:=*;
 ?(-b0<=trainAcc & trainAcc<a0);}

Free Driving

Brake

Train Motion for at most time T

p e

Control Structure
Control code runs in a loop with some latency T (in our case, to the
order of a second).

18

{
 t:=0;
 {
 { ? (- > stoppingDistance(, ,));

 :=*; ?(-);
 :=0; :=0;
 }
 { :=- ; := }

 }

 { = , = ,

 & &
 }
}*

 # $ $ % &'
&('!&) ≤ &(≤ &!&)
!' &'
∪
&('!&) !' !$;

 $′ % %′ &(+ max(&', &'!&)) + &"($) + &*($) + &+(%) &′ ' = !', ,′ = 1
, ≤ - % ≥ 0

End of movement authority: the train
must stop by this point

Upper bound on distance traveled before
train stops if you accelerate for one
control cycle and brake after that.

Theorem "WP2/slopecurve_offset_airbrakes_1"

Definitions
 /* Acceleration coefficients. */
 Real a0; /* Strict upper bound on maximal constant acceleration. */
 Real a1; /* Accelerations that are linear in velocity. */
 Real a2; /* Accelerations that are quadratic in velocity. */
 Real b0; /* Maximal constant braking force (positive). */
 Real crvDer; /* Coefficient in derivative of horizontal curve. */

 /* Situational track setup */
 Real maxSlope; /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */
 Real T; /* Time control loop period / system reaction time. */
 Real slopeAcc(Real trainPos); /* Slope acceleration map (where trainPos is measured along the
sloped track rather than along flat land). a_c in the paper. */
 Real end; /* End of movement authority. e in the paper. */
 Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is
measured along the sloped track rather than along flat land). a_c in the paper. */
 Real maxVertCur; /* Maximal rate of change of slope (vertical curvature). h_{max} in the
paper. */
 Real Rmin; /* Bound on friction due to horizontal curve (resistance at min radius). m_c in
the paper. */
 Real Apb; /* maximum penalty brake acceleration */
 Real buildupThreshold; /* Time offset until pressure brakes can be applied. */
 Real pressureChangeRate; /* (Linear) rate of increase in acceleration due to air brakes when train
is applying them. */

 /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */
 Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T;

 /* Maximum acceleration due to slope. */
 Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope);

 /* Maximum acceleration due to curve (negative since curves decelerate). */
 Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0);

 /* The train will stop in at most this much distance if braking from speed vel. */
 Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)),
 (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2);

 /* The train will stop in at most this much distance if it accelerates for a time period and then brakes.
*/
 Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel,
slopeAcc(trainPos), curvature(trainPos)), 0) + upperDist(vel, slopeAcc(trainPos), curvature(trainPos));

 /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the
paper. */
 Real resistance(Real vel) = a1*vel + a2*vel^2;

 /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity
vel from position trainPos. */
 Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) +
curvature(trainPos);

 /* Upper bound on new velocity (increased for one time period). */
 Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel
 + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel))
 + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T;

 /* Upper bound on distance covered for one time period under acceleration. */
 Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*(
 a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel))
 + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2;

 /* Time till pipe pressure is at maximum given current pressure. */
 Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate;

 /* Utility functions for absolute values: True iff |x|<=y */
 Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y);

 /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical
curve and curve derivatives. */
 Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x')
 & \forall x' \forall x absLessEq((curvature(x))', crvDer*x');

 /* Assumptions on constants. */
 Bool conditionsOnConsts() <->
 a0>0 /* Strict upper bound on maximal constant acceleration, must be
positive. */
 & b0>0 /* Maximal constant braking force (positive). */
 & a1<0 /* Accelerations that are linear in velocity. */
 & a2<0 /* Accelerations that are quadratic in velocity. */
 & maxSlope>=0 /* Greatest allowed acceleration due to slope gradient. */
 & T>0 /* Time control loop period / system reaction time. */
 & b0-maxSlope>0 /* Brakes more powerful than effect of slope. */
 & a0-maxSlope>0 /* Engine more powerful than effect of slope. */
 & a0-maxSlope+Rmin>0 /* Engine more powerful than curve and slope. */
 & maxVertCur>=0 /* Maximal rate of change of slope (vertical curvature). */
 & Rmin<=0 /* Bound on friction due to horizontal curve (resistance at min
radius). */
 & crvDer>=0 /* Coefficient in derivative of horizontal curve. */
 & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0) /* Track is built correctly:
all curvatures along actual track satisfy bound on friction due to curve. */
 & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope) /* Track is built correctly: all slope
accelerations along actual track are within maxSlope. */
 & Apb<0 /* Maximally engaged air pressure brakes provide negative
acceleration. */
 & buildupThreshold>0 /* Air pressure brake propagation time is some positive
numbers. */
 & pressureChangeRate<0; /* The rate at which acceleration provided by the
pressure brakes increases. */
End.

ProgramVariables
 Real trainPos; /* The position of the train. */
 Real vel; /* The speed of the train. */
 Real trainAcc; /* Acceleration/deceleration control, i.e., engine acceleration and braking. */
 Real buildup; /* How long pipe pressure has been building up. */
 Real brakeSlope; /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */
 Real airBrake; /* Acceleration due to current pipe pressure. */
End.

Problem
 end-trainPos>brakingDistance(vel, 0)
 & conditionsOnConsts()
 & limitedTrackChange()
 & vel>=0
 & brakeSlope=0
 & airBrake=0
 ->
 [
 {
 t:=0;
 {{?(end-trainPos > stoppingDistance(trainPos, vel));
 trainAcc:=*;
 ?(-b0<=trainAcc & trainAcc<a0);}

Free Driving

Brake

Train Motion for at most time T

p e

Control Structure
Control code runs in a loop with some latency T (in our case, to the
order of a second).

19

{
 t:=0;
 {
 { ? (- > stoppingDistance(, ,));

 :=*; ?(-);
 :=0; :=0;
 }
 { :=- ; := }

 }

 { = , = ,

 & &
 }
}*

 # $ $ % &'
&('!&) ≤ &(≤ &!&)
!' &'
∪
&('!&) !' !$;

 $′ % %′ &(+ max(&', &'!&)) + &"($) + &*($) + &+(%) &′ ' = !', ,′ = 1
, ≤ - % ≥ 0

Theorem "WP2/slopecurve_offset_airbrakes_1"

Definitions
 /* Acceleration coefficients. */
 Real a0; /* Strict upper bound on maximal constant acceleration. */
 Real a1; /* Accelerations that are linear in velocity. */
 Real a2; /* Accelerations that are quadratic in velocity. */
 Real b0; /* Maximal constant braking force (positive). */
 Real crvDer; /* Coefficient in derivative of horizontal curve. */

 /* Situational track setup */
 Real maxSlope; /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */
 Real T; /* Time control loop period / system reaction time. */
 Real slopeAcc(Real trainPos); /* Slope acceleration map (where trainPos is measured along the
sloped track rather than along flat land). a_c in the paper. */
 Real end; /* End of movement authority. e in the paper. */
 Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is
measured along the sloped track rather than along flat land). a_c in the paper. */
 Real maxVertCur; /* Maximal rate of change of slope (vertical curvature). h_{max} in the
paper. */
 Real Rmin; /* Bound on friction due to horizontal curve (resistance at min radius). m_c in
the paper. */
 Real Apb; /* maximum penalty brake acceleration */
 Real buildupThreshold; /* Time offset until pressure brakes can be applied. */
 Real pressureChangeRate; /* (Linear) rate of increase in acceleration due to air brakes when train
is applying them. */

 /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */
 Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T;

 /* Maximum acceleration due to slope. */
 Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope);

 /* Maximum acceleration due to curve (negative since curves decelerate). */
 Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0);

 /* The train will stop in at most this much distance if braking from speed vel. */
 Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)),
 (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2);

 /* The train will stop in at most this much distance if it accelerates for a time period and then brakes.
*/
 Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel,
slopeAcc(trainPos), curvature(trainPos)), 0) + upperDist(vel, slopeAcc(trainPos), curvature(trainPos));

 /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the
paper. */
 Real resistance(Real vel) = a1*vel + a2*vel^2;

 /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity
vel from position trainPos. */
 Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) +
curvature(trainPos);

 /* Upper bound on new velocity (increased for one time period). */
 Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel
 + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel))
 + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T;

 /* Upper bound on distance covered for one time period under acceleration. */
 Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*(
 a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel))
 + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2;

 /* Time till pipe pressure is at maximum given current pressure. */
 Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate;

 /* Utility functions for absolute values: True iff |x|<=y */
 Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y);

 /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical
curve and curve derivatives. */
 Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x')
 & \forall x' \forall x absLessEq((curvature(x))', crvDer*x');

 /* Assumptions on constants. */
 Bool conditionsOnConsts() <->
 a0>0 /* Strict upper bound on maximal constant acceleration, must be
positive. */
 & b0>0 /* Maximal constant braking force (positive). */
 & a1<0 /* Accelerations that are linear in velocity. */
 & a2<0 /* Accelerations that are quadratic in velocity. */
 & maxSlope>=0 /* Greatest allowed acceleration due to slope gradient. */
 & T>0 /* Time control loop period / system reaction time. */
 & b0-maxSlope>0 /* Brakes more powerful than effect of slope. */
 & a0-maxSlope>0 /* Engine more powerful than effect of slope. */
 & a0-maxSlope+Rmin>0 /* Engine more powerful than curve and slope. */
 & maxVertCur>=0 /* Maximal rate of change of slope (vertical curvature). */
 & Rmin<=0 /* Bound on friction due to horizontal curve (resistance at min
radius). */
 & crvDer>=0 /* Coefficient in derivative of horizontal curve. */
 & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0) /* Track is built correctly:
all curvatures along actual track satisfy bound on friction due to curve. */
 & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope) /* Track is built correctly: all slope
accelerations along actual track are within maxSlope. */
 & Apb<0 /* Maximally engaged air pressure brakes provide negative
acceleration. */
 & buildupThreshold>0 /* Air pressure brake propagation time is some positive
numbers. */
 & pressureChangeRate<0; /* The rate at which acceleration provided by the
pressure brakes increases. */
End.

ProgramVariables
 Real trainPos; /* The position of the train. */
 Real vel; /* The speed of the train. */
 Real trainAcc; /* Acceleration/deceleration control, i.e., engine acceleration and braking. */
 Real buildup; /* How long pipe pressure has been building up. */
 Real brakeSlope; /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */
 Real airBrake; /* Acceleration due to current pipe pressure. */
End.

Problem
 end-trainPos>brakingDistance(vel, 0)
 & conditionsOnConsts()
 & limitedTrackChange()
 & vel>=0
 & brakeSlope=0
 & airBrake=0
 ->
 [
 {
 t:=0;
 {{?(end-trainPos > stoppingDistance(trainPos, vel));
 trainAcc:=*;
 ?(-b0<=trainAcc & trainAcc<a0);}

Train Motion for at most time T

Only if there is a sufficient distance margin

Always allow braking

Allow acceleration

Brake

Free Driving

Control Structure
Control code runs in a loop with some latency T (in our case, to the
order of a second).

20

Theorem "WP2/slopecurve_offset_airbrakes_1"

Definitions
 /* Acceleration coefficients. */
 Real a0; /* Strict upper bound on maximal constant acceleration. */
 Real a1; /* Accelerations that are linear in velocity. */
 Real a2; /* Accelerations that are quadratic in velocity. */
 Real b0; /* Maximal constant braking force (positive). */
 Real crvDer; /* Coefficient in derivative of horizontal curve. */

 /* Situational track setup */
 Real maxSlope; /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */
 Real T; /* Time control loop period / system reaction time. */
 Real slopeAcc(Real trainPos); /* Slope acceleration map (where trainPos is measured along the
sloped track rather than along flat land). a_c in the paper. */
 Real end; /* End of movement authority. e in the paper. */
 Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is
measured along the sloped track rather than along flat land). a_c in the paper. */
 Real maxVertCur; /* Maximal rate of change of slope (vertical curvature). h_{max} in the
paper. */
 Real Rmin; /* Bound on friction due to horizontal curve (resistance at min radius). m_c in
the paper. */
 Real Apb; /* maximum penalty brake acceleration */
 Real buildupThreshold; /* Time offset until pressure brakes can be applied. */
 Real pressureChangeRate; /* (Linear) rate of increase in acceleration due to air brakes when train
is applying them. */

 /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */
 Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T;

 /* Maximum acceleration due to slope. */
 Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope);

 /* Maximum acceleration due to curve (negative since curves decelerate). */
 Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0);

 /* The train will stop in at most this much distance if braking from speed vel. */
 Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)),
 (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2);

 /* The train will stop in at most this much distance if it accelerates for a time period and then brakes.
*/
 Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel,
slopeAcc(trainPos), curvature(trainPos)), 0) + upperDist(vel, slopeAcc(trainPos), curvature(trainPos));

 /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the
paper. */
 Real resistance(Real vel) = a1*vel + a2*vel^2;

 /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity
vel from position trainPos. */
 Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) +
curvature(trainPos);

 /* Upper bound on new velocity (increased for one time period). */
 Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel
 + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel))
 + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T;

 /* Upper bound on distance covered for one time period under acceleration. */
 Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*(
 a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel))
 + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2;

 /* Time till pipe pressure is at maximum given current pressure. */
 Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate;

 /* Utility functions for absolute values: True iff |x|<=y */
 Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y);

 /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical
curve and curve derivatives. */
 Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x')
 & \forall x' \forall x absLessEq((curvature(x))', crvDer*x');

 /* Assumptions on constants. */
 Bool conditionsOnConsts() <->
 a0>0 /* Strict upper bound on maximal constant acceleration, must be
positive. */
 & b0>0 /* Maximal constant braking force (positive). */
 & a1<0 /* Accelerations that are linear in velocity. */
 & a2<0 /* Accelerations that are quadratic in velocity. */
 & maxSlope>=0 /* Greatest allowed acceleration due to slope gradient. */
 & T>0 /* Time control loop period / system reaction time. */
 & b0-maxSlope>0 /* Brakes more powerful than effect of slope. */
 & a0-maxSlope>0 /* Engine more powerful than effect of slope. */
 & a0-maxSlope+Rmin>0 /* Engine more powerful than curve and slope. */
 & maxVertCur>=0 /* Maximal rate of change of slope (vertical curvature). */
 & Rmin<=0 /* Bound on friction due to horizontal curve (resistance at min
radius). */
 & crvDer>=0 /* Coefficient in derivative of horizontal curve. */
 & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0) /* Track is built correctly:
all curvatures along actual track satisfy bound on friction due to curve. */
 & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope) /* Track is built correctly: all slope
accelerations along actual track are within maxSlope. */
 & Apb<0 /* Maximally engaged air pressure brakes provide negative
acceleration. */
 & buildupThreshold>0 /* Air pressure brake propagation time is some positive
numbers. */
 & pressureChangeRate<0; /* The rate at which acceleration provided by the
pressure brakes increases. */
End.

ProgramVariables
 Real trainPos; /* The position of the train. */
 Real vel; /* The speed of the train. */
 Real trainAcc; /* Acceleration/deceleration control, i.e., engine acceleration and braking. */
 Real buildup; /* How long pipe pressure has been building up. */
 Real brakeSlope; /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */
 Real airBrake; /* Acceleration due to current pipe pressure. */
End.

Problem
 end-trainPos>brakingDistance(vel, 0)
 & conditionsOnConsts()
 & limitedTrackChange()
 & vel>=0
 & brakeSlope=0
 & airBrake=0
 ->
 [
 {
 t:=0;
 {{?(end-trainPos > stoppingDistance(trainPos, vel));
 trainAcc:=*;
 ?(-b0<=trainAcc & trainAcc<a0);}

Control Envelope

{
 t:=0;
 {
 { ? (- > stoppingDistance(, ,));

 :=*; ?(-);
 :=0; :=0;
 }
 { :=- ; := }

 }

 { = , = ,

 & &
 }
}*

 # $ $ % &'
&('!&) ≤ &(≤ &!&)
!' &'
∪
&('!&) !' !$;

 $′ % %′ &(+ max(&', &'!&)) + &"($) + &*($) + &+(%) &′ ' = !', ,′ = 1
, ≤ - % ≥ 0

Brake

Free Driving

Train Motion for at most time T

Envelope: Where the Complexity is

21

Overview

Part 1: Train Verification

• Introduction

• Techniques

• Controller

• Evaluation

• Summary

22

Limiting Undershoot while Maintaining Safety

23
[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad Administration, 2009.

Start braking

Train stops

End of movement authority

24

Limiting Undershoot while Maintaining Safety

Start braking

Train stops

End of movement authority

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad Administration, 2009.

Summary

e

25

Verified controller for full FRA model dynamics. KeYmaera X proofs available online

Experiments
Controller limits undershoot while maintaining
safety

Generalizable Techniques
• Dealing with unknown functions
• Circular dependencies
• Taylor polynomials
• Ghost dynamics

Verified Model Generalizability
• Abstraction of physical details
• Nondeterministic controller

Proofs: https://doi.org/10.1184/R1/19542610

Pt 2: CESAR: Control Envelope Synthesis via
Angelic Refinements

26

Aditi Kabra Jonathan Laurent Stefan Mitsch André Platzer

Overview

Part 2: Synthesis
• Introduction
• Problem Statement

• Game Logic and Solution

• Refinement

• Evaluation

27

Design by proof

28

Proving in KeYmaera X

Theorem Prover

FRA Model
(a few
equations)

Formal Model

Conjecture
a Model Try Proof

Proof fails

30+ proof attempts!

27

Can we automate it?

Synthesis Pipeline

Model Template
Synthesis procedure

fills out the hard parts Control Envelope

29

Related work
Controller Synthesis Techniques Controller Envelope Synthesis

• Bounds permissible controllers
• Permits separation of safety critical and secondary

concerns
• Can be used, e.g., as trusted envelope for machine

learning

Numerical Safety Shields Symbolic

• Good for high dimension, infinite space/time problems
• Statically computable

1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018
3. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model,

RV 2014

Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal

verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

• Faster
• Potentially more scalable for complex problems

30

This WorkOther Work

Related work
Controller Synthesis Techniques Controller Envelope Synthesis

• Bounds permissible controllers
• Permits separation of safety critical and secondary

concerns
• Can be used, e.g., as trusted envelope for machine

learning

Numerical Safety Shields Symbolic

• Good for high dimension, infinite space/time problems
• Statically computable

1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018
3. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model,

RV 2014

Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal

verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

• Faster
• Potentially more scalable for complex problems

30

This WorkOther Work

Related work
Controller Synthesis Techniques Controller Envelope Synthesis

• Bounds permissible controllers
• Permits separation of safety critical and secondary

concerns
• Can be used, e.g., as trusted envelope for machine

learning

Numerical Safety Shields Symbolic

• Good for high dimension, infinite space/time problems
• Statically computable

1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018
3. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model,

RV 2014

Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal

verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

• Faster
• Potentially more scalable for complex problems

30

This WorkOther Work

Related work
Controller Synthesis Techniques Controller Envelope Synthesis

• Bounds permissible controllers
• Permits separation of safety critical and secondary

concerns
• Can be used, e.g., as trusted envelope for machine

learning

Numerical Safety Shields Symbolic

• Good for high dimension, infinite space/time problems
• Statically computable

1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018
3. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model,

RV 2014

Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal

verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

• Faster
• Potentially more scalable for complex problems

30

This WorkOther Work

Overview

Part 2: Synthesis

• Introduction

• Problem Statement
• Game Logic and Solution

• Refinement

• Evaluation

31

Problem

32

Fill in holes () in a template with a propositional formula.

Problem

32

Fill in holes () in a template with a propositional formula.

Initial Assumptions

Problem

32

Fill in holes () in a template with a propositional formula.

Initial Assumptions

Control Loop

Problem

32

Fill in holes () in a template with a propositional formula.

Initial Assumptions

Control Loop Safety Contract

Problem

33

Fill in holes () in a template with a propositional formula.

Problem

33

Fill in holes () in a template with a propositional formula.

Assumptions on the system

Problem

33

Fill in holes () in a template with a propositional formula.

Assumptions on the system

Conditions for controllability

Problem

33

Fill in holes () in a template with a propositional formula.

Assumptions on the system

Conditions for controllability

Branch between i
possible actions

Problem

33

Fill in holes () in a template with a propositional formula.

Assumptions on the system

Conditions for controllability

Branch between i
possible actions

When is it ok to take action i?

Problem

33

Fill in holes () in a template with a propositional formula.

Assumptions on the system

Conditions for controllability

Branch between i
possible actions

When is it ok to take action i?

Physical environment

Problem

34

Fill in holes () in a template with a propositional formula.

Example:

Problem

35

Fill in holes () in a template with a propositional formula.

Example:

Assumptions on the system

Problem

36

Example:

Conditions from necessary to safety

Fill in holes () in a template with a propositional formula.

Problem

37

Fill in holes () in a template with a propositional formula.

Example:

When is it ok to accelerate?

Problem

38

Fill in holes () in a template with a propositional formula.

Example:

When is it ok to brake?

Problem

39

Fill in holes () in a template with a propositional formula.

Example:

System differential equation

Problem

40

Fill in holes () in a template with a propositional formula.

Example:

Safety contract

Problem: Example Solution

41

Fill in holes () in a template.

Example:

There’s enough space to stop if we start braking now

Problem: Example Solution

42

Fill in holes () in a template.

Example:

There’s enough space to stop if we accelerate for one time period and then keep braking

Problem: Example Solution

43

Fill in holes () in a template.

Example:

You never make life worse by braking

Solution

44

Fill in holes () in a template with a propositional formula.

Solution

44

Fill in holes () in a template with a propositional formula.

1. Safety (valid dL formula)
2. Always some control option ()(assum ∧ .) → ∨/ 0/

Aditi Nandkishor Kabra
I

Aditi Nandkishor Kabra
G

Quality of Solution

45

When can the train Accelerate?

When False (never)

Safe Not Useful

When can the train Accelerate?

When ! − " > (# + $%)2

2&
Safe Useful

• Good solution: more permissive
• !" ≥ ! when ⊨ assum → * → *" and ⊨ assum ∧ * →∧, (., → .,")
• Unique optimum

Overview

Part 2: Synthesis

• Introduction

• Problem Statement

• Game Logic and Solution
• Refinement

• Evaluation

46

Background: Game Logic
dL has nondeterminism

47

(& ≔ 1 ∪ & ≔ 2)

vs

Players resolve nondeterminism

(& ≔ 1 ∪ & ≔ 2)
Operators

(& ≔ 1 ∩ & ≔ 2)

Angelic Game

Demonic Game

[]
Demon wins if in the end, a=A
(& ≔ 1 ∩ & ≔ 2) & = 1

Duality

3 ∩ 4, 3×, ?5d , {)′ = 6())7}8

¬⟨3⟩¬9 ↔ [&]9

Axioms

dGl without loops: transla~on
in first order logic.

[(v≔1∩v≔-1);{x^′=v}]x≠0

≡[(v≔1)][{x^′=v}]x≠0∨
[(v≔-1)][{x^′=v}]x≠0

≡[{x^′=1}]x≠0∨[{x^′=-1}]x≠0

≡∀t≥0x+t≠0∨∀t≥0x-t≠0

≡x>0∨x<0

⟨(a≔A∩a≔B)⟩a=A
Angel wins if in the end, a=A

! ¬#! #

Background: Game Logic
dL has nondeterminism

48

(& ≔ 1 ∪ & ≔ 2)

vs

Players resolve nondeterminism

(& ≔ 1 ∪ & ≔ 2)
Operators

(& ≔ 1 ∩ & ≔ 2)

Angelic Game

Demonic Game

[]
Demon wins if in the end, a=A
(& ≔ 1 ∩ & ≔ 2) & = 1

Duality

3 ∩ 4, 3×, ?5d , {)′ = 6())7}8

¬⟨3⟩¬9 ↔ [&]9

Axioms

dGl without loops: transla~on
in first order logic.

[(v≔1∩v≔-1);{x^′=v}]x≠0

≡[(v≔1)][{x^′=v}]x≠0∨
[(v≔-1)][{x^′=v}]x≠0

≡[{x^′=1}]x≠0∨[{x^′=-1}]x≠0

≡∀t≥0x+t≠0∨∀t≥0x-t≠0

≡x>0∨x<0

⟨(a≔A∩a≔B)⟩a=A
Angel wins if in the end, a=A

! ¬#! #

Background: Game Logic
dL has nondeterminism

49

(& ≔ 1 ∪ & ≔ 2)

vs

Players resolve nondeterminism

(& ≔ 1 ∪ & ≔ 2)
Operators

(& ≔ 1 ∩ & ≔ 2)

Angelic Game

Demonic Game

[]
Demon wins if in the end, a=A
(& ≔ 1 ∩ & ≔ 2) & = 1

Duality

3 ∩ 4, 3×, ?5d , {)′ = 6())7}8

¬⟨3⟩¬9 ↔ [&]9

Axioms

dGl without loops: transla~on
in first order logic.

[(v≔1∩v≔-1);{x^′=v}]x≠0

≡[(v≔1)][{x^′=v}]x≠0∨
[(v≔-1)][{x^′=v}]x≠0

≡[{x^′=1}]x≠0∨[{x^′=-1}]x≠0

≡∀t≥0x+t≠0∨∀t≥0x-t≠0

≡x>0∨x<0

⟨(a≔A∩a≔B)⟩a=A
Angel wins if in the end, a=A

! ¬#! #

Background: Game Logic
dL has nondeterminism

50

(& ≔ 1 ∪ & ≔ 2)

vs

Players resolve nondeterminism

(& ≔ 1 ∪ & ≔ 2)
Operators

(& ≔ 1 ∩ & ≔ 2)

Angelic Game

Demonic Game

[]
Demon wins if in the end, a=A
(& ≔ 1 ∩ & ≔ 2) & = 1

Duality

3 ∩ 4, 3×, ?5d , {)′ = 6())7}8

¬⟨3⟩¬9 ↔ [&]9

Axioms

dGl without loops: transla~on
in first order logic.

[(v≔1∩v≔-1);{x^′=v}]x≠0

≡[(v≔1)][{x^′=v}]x≠0∨
[(v≔-1)][{x^′=v}]x≠0

≡[{x^′=1}]x≠0∨[{x^′=-1}]x≠0

≡∀t≥0x+t≠0∨∀t≥0x-t≠0

≡x>0∨x<0

⟨(a≔A∩a≔B)⟩a=A
Angel wins if in the end, a=A

! ¬#! #

Background: Game Logic
dL has nondeterminism

51

(& ≔ 1 ∪ & ≔ 2)

vs

Players resolve nondeterminism

(& ≔ 1 ∪ & ≔ 2)
Operators

(& ≔ 1 ∩ & ≔ 2)

Angelic Game

Demonic Game

[]
Demon wins if in the end, a=A
(& ≔ 1 ∩ & ≔ 2) & = 1

Duality

3 ∩ 4, 3×, ?5d , {)′ = 6())7}8

¬⟨3⟩¬9 ↔ [&]9

Axioms

dGl without loops: transla~on
in first order logic.

[(v≔1∩v≔-1);{x^′=v}]x≠0

≡[(v≔1)][{x^′=v}]x≠0∨
[(v≔-1)][{x^′=v}]x≠0

≡[{x^′=1}]x≠0∨[{x^′=-1}]x≠0

≡∀t≥0x+t≠0∨∀t≥0x-t≠0

≡x>0∨x<0

⟨(a≔A∩a≔B)⟩a=A
Angel wins if in the end, a=A

! ¬#! #

Optimal Solution

52

Controller chooses in its best interest

The set of all states from which a perfect controller can keep the system safe forever

By construction, Ioop invariant

Allow any control action that is guaranteed to keep the system within !"#$

Aditi Nandkishor Kabra

Optimal Solution

52

Controller chooses in its best interest

The set of all states from which a perfect controller can keep the system safe forever

By construction, Ioop invariant

Allow any control action that is guaranteed to keep the system within !"#$

Computing Propositional Arithmetic Solutions

• Easily checked at runtime

53

Computing Propositional Arithmetic Solutions

• Easily checked at runtime

• Use the semantics of dGL (which are in terms of) :;<∗

53

Computing Propositional Arithmetic Solutions

• Easily checked at runtime

• Use the semantics of dGL (which are in terms of) :;<∗

• *But two dGL constructions need more than .:;<

53

Computing Propositional Arithmetic Solutions

• Easily checked at runtime

• Use the semantics of dGL (which are in terms of) :;<∗

• *But two dGL constructions need more than .:;<

• Loops: Defined in terms of fixed point

• Differential equations: Presupposes an ODE solution

53

Approximate with “Refinement”

Approximate

Overview

Part 2: Synthesis

• Introduction

• Problem Statement

• Game Logic and Solution

• Refinement
• Evaluation

54

Refinement
Want to remove

this

55

Refinement
Want to remove

this

Action Choice
Refinement

1-shot
Unrolling

Bounded
Fallback

Unrolling

If Action
Permanence

then

Iteratively
improved

by
55

Action Choice Refinement

56

The game obtained by restricting the controller
to one action

Is harder than the game where the controller
chooses between multiple actions

0 ≔ − 2; , ≔ 0;

{$′ = %, %′ = &, ,′ = 1 , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0
(0 ≔ − 2 ∩ 0 ≔ 3); , ≔ 0;

{$′ = %, %′ = &, ,′ = 1 , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0

Action Choice Refinement

56

The game obtained by restricting the controller
to one action

Is harder than the game where the controller
chooses between multiple actions

0 ≔ − 2; , ≔ 0;

{$′ = %, %′ = &, ,′ = 1 , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0
(0 ≔ − 2 ∩ 0 ≔ 3); , ≔ 0;

{$′ = %, %′ = &, ,′ = 1 , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0

If you repeat a time bounded ODE
That’s like executing the ODE for

arbitrarily long
& ≔ − 2; 4 ≔ 5;

{$′ = %, %′ = &, ,′ = 1 4 ≤ 6 ∧ % ≥ 0}
∗

 # − $ > 0 [& ≔ − 2; {$′ = %, %′ = &, ,′ = 1 % ≥ 0}]# − $ > 0

One Shot Unrolling

Action Choice Refinement

56

The game obtained by restricting the controller
to one action

Is harder than the game where the controller
chooses between multiple actions

0 ≔ − 2; , ≔ 0;

{$′ = %, %′ = &, ,′ = 1 , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0
(0 ≔ − 2 ∩ 0 ≔ 3); , ≔ 0;

{$′ = %, %′ = &, ,′ = 1 , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0

If you repeat a time bounded ODE
That’s like executing the ODE for

arbitrarily long
& ≔ − 2; 4 ≔ 5;

{$′ = %, %′ = &, ,′ = 1 4 ≤ 6 ∧ % ≥ 0}
∗

 # − $ > 0 [& ≔ − 2; {$′ = %, %′ = &, ,′ = 1 % ≥ 0}]# − $ > 0

One Shot Unrolling
12

3
4

One Shot Refinement

57

[& ≔ − 2; {$′ = %, %′ = &, ,′ = 1 % ≥ 0}]# − $ > 0

∀,(% − 2, ≥ 0 → $ + %, − 2,2

2 > #)

. =

Quantifier Elimination

Symbolic Execution

! + #$
2& > (

One Shot Refinement

57

 Action permanence:

 In practice: when a control action corresponds to a “mode” of behavior.

[& ≔ − 2; {$′ = %, %′ = &, ,′ = 1 % ≥ 0}]# − $ > 0

∀,(% − 2, ≥ 0 → $ + %, − 2,2

2 > #)

. =

Quantifier Elimination

Symbolic Execution

! + #$
2& > (

One-shot Unrolling: Example

58

• 1-shot unrolling lets the controller choose one action and run it
forever.

1 iteration 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice

One-shot Unrolling: Example

59

• 1-shot unrolling lets the controller choose one action and run it
forever.

1 iteration2 iterations 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice

One-shot Unrolling: Example

60

• 1-shot unrolling lets the controller choose one action and run it
forever.

1 iteration2 iterations 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice

One-shot Unrolling: Example

61

• 1-shot unrolling lets the controller choose one action and run it
forever.

1 iteration2 iterations 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice

One-shot Unrolling: Example

62

• 1-shot unrolling lets the controller choose one action and run it
forever.

1 iteration2 iterations 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice

Bounded Unrolling

64

• ! switches to reach the region "# in which safety is guaranteed
indefinitely
• Controller has chance to switch within [%, % + (] window because

plant can never execute for time greater than T

Bounded Unrolling

65

Controller chooses
some time in the

future
= For a controller choice

chosen up to time =

By time the controller
reaches established safe

region

=

.>−1

While
staying

safe

• ! switches to reach the region "# in which safety is guaranteed
indefinitely
• Controller has chance to switch within [%, % + (] window because

plant can never execute for time greater than T

Dual Game
Optimal?

or

Duality

¬⟨3⟩¬9 ↔ [&]9

Check Environment Game
 ()⟨3⟩¬9??

66

! ¬#! #

! ¬#

$

! ¬#

! #$

! ¬#
$% ??

! ¬#
$%

Algorithm: CESAR

• Recursively compute bounded unrolled invariants ..>

67

Algorithm: CESAR

• Recursively compute bounded unrolled invariants ..>

• Stop if either

• Reached fixed point =

• Optimality check using dual succeeds (in all regions not in the
invariant, can environment “win”?)

• Unrolling budget reached

(.> .>+1)

67

Algorithm: CESAR

• Recursively compute bounded unrolled invariants ..>

• Stop if either

• Reached fixed point =

• Optimality check using dual succeeds (in all regions not in the
invariant, can environment “win”?)

• Unrolling budget reached

(.> .>+1)

• With resulting , compute each hole fill using.

67

Overview

Part 2: Synthesis

• Introduction

• Problem Statement

• Game Logic and Solution

• Refinement

• Evaluation

68

Evaluation

69

Benchmark Suite with different control challenges

Evaluation

70

Future Work
• Handle hard dynamics

• Generalize to differential game logic

Time
Triggered
Control

Event
Triggered
Control

Free
Assignments

Adversarial
Agents

Unknown
Functions

Circular
Dependencies

Taylor
Polynomials

Ghost
Dynamics

71

Thank You!

Aditi Kabra

https://aditink.github.io

akabra@cs.cmu.edu

72

