Train Verification and Control Envelope Synthesis

Aditi Kabra

Computer Science Department, Carnegie Mellon University

KIT 06/2023

Cyber Physical Systems

Overview

Pt 1: Verified Train Controllers for the Federal Railroad Administration Train Kinematics Model:

Balancing Competing Brake and Track Forces

Aditi Kabra Stefan Mitsch André Platzer

EMSOFT 2022

4

Supported by FRA contract number 693JJ620C000025

Formal Verification

Proof: All goals closed

Infinitely many possibilities checked once and for all

[1] J. Brosseau and B. M. Ede, "Development of an adaptive predictive braking enforcement algorithm", Federal Railroad Administration, 2009.

Formal Verification

[1] J. Brosseau and B. M. Ede, "Development of an adaptive predicti Administration, 2009. Generalizable

8

8

Overview

Part 1: Train Verification

- Introduction
- Techniques
- Controller
- Evaluation
- Summary

Background: Dynamics

Background: Dynamics

Unknown functions: slope, curve

$$p' = v, v' = a_l + a_a + a_s(p) + a_r(v) + a_c(p), a'_b = m_b$$

Unknown functions: slope, curve

Use worst case value ...

Unknown functions: slope, curve

... with improving estimates.

Other Proof Techniques

Circular Dependencies

Problem: Circular dependence while estimating worst case values.

Solution: Bootstrap cycle with naive values, then

Taylor Polynomial

Problem: Davis resistance integrates poorly.

Solution: Taylor polynomial approximation.

Ghost Trains

Problem: Intermediate reasoning steps transcendental.

Solution: Reason about as ODE (here represents dynamics of a "ghost" train).

13

Overview

- Introduction
- Techniques
- Controller
- Evaluation
- Summary

Control code runs in a loop with some latency T (in our case, to the order of a second).

Theorem "WP2/slopecurve_offset_airbrakes_1" Definitions /* Acceleration coefficients. */ Real 30: /* Strict upper bound on maximal constant acce Real 31: /* Accelerations that are linear in velocity. */ Real 30: /* Maximal constant braking force (positive). */ Real Core, /* Cellicient in derivative of horizontal curve

eal baseUpperV(Real a0, Real vel) = vel + (a

I maxCurveAcc(Real curvature_Real yel) = min((curvature+crvDer*yel*T)_C

all masSlope; // Greatest allowed acceleration due to slope gradient. m_ lait 7; // *Time control loop period / ystem reaction time.*// all diopeAcc(Real TranhPos); // *Slope acceleration map (where tranhPos is measure ed track rather than along flat land). a_c in the paper.*/ lait curvature/Real trainPos); // Acceleration due to curve resistance map (where t used along the contrack rather than along flat land) a_c in the paper.*/

Control code runs in a loop with some latency T (in our case, to the order of a second).

Real a0: /* Strict upper bound on

/* Accelerations that are linear in velocity. * * Accelerations that are quadratic in velocity /* Maximal constant braking force (positive). * * Coefficient in derivative of ho

/* Greatest allowed accel ation due to slope gra /* Time control loop period / system reaction tim al trainPos): /* Slope acceleration map (where trai eration due to curve resistance

Real trainAcc. Real yel, Real slopeAcc. Real curv

t(Real yel: Real sloneAcc. Real curvature) = yel*T +

ations that are guadratic in velocity. Greatest allowed acceleration due to slo

Control code runs in a loop with some latency T (in our case, to the order of a second).

Theorem "WP2/slopecurve_offset_airbrakes_1" Definitions /* Acceleration coefficients. */ Real 30: /* Strict upper bound on maximal constant acce Real 31: /* Accelerations that are linear in velocity. */ Real 30: /* Maximal constant braking force (positive). */ Real Core, /* Cellicient in derivative of horizontal curve

Real Ach

eal baseUpperV(Real a0, Real vel) = vel + (a

Maximum acceleration due to clone

Nation matching: h^{-1} Grantest allowed acceleration due to slope gradient, m_{\pm} in the Nation T_{\pm} (h^{-1} Time control loop gradient (h^{-1} Single Argenting (h^{-1}

Control code runs in a loop with some latency T (in our case, to the order of a second).

Theorem "WP2/slopecurve_offset_airbrakes_1* Definitions /* Acceleration coefficients. */ Real a0; /* Strict upper bound on maximal constant acce Real a1; /* Accelerations that are linear in velocity. */ Real b2; /* Accelerations that are quadratic in velocity. Real a0; /* Maximal constant braking force (positive). */ Real a0; /* Maximal constant braking force (positive).

> /* Greatest allowed acceleration due to slope gradient. m_s in the pa /* Time control loop period / system reaction time. */

Real slopeAcc(Real trainPop); /* Slope acceleration map (where trainPops is r oped track rather than along flat land). a_c in the paper. */ Real end; _____ * End of movement authority e in the paper. */ Real curvature(Real trainPop); /* Acceleration due to curve resistance map essured along the sloped track rather than along flat land). a c in the paper.

/* Time offset until o

Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0

Real baseUpperV(Real a0, Real vel) = vel + (a0

Real maxSlope;

the paper. * Real Apb:

Envelope: Where the Complexity is
brakeDist_a(v,a_b) =

$$vt_b(v,a_b) + \frac{1}{2}(b_{\max} - m_s + a_b)t_b(v,a_b)^2 + \frac{1}{6}(m_p)t_b(v,a_b)^3$$

 $+ \frac{v - (b_{\max} - m_s + a_b)t_b(v,a_b) + \frac{1}{2}m_pt_b(v,a_b)^2}{2(b_{\max} - m_s - a_{b\max})}$
 $t_b(v,a_b) = \min((a_{b\max} - a_b)/m_p, \frac{(b_{\max} - m_s + a_b) - |(b_{\max} - m_s + a_b)^2 - 2m_pv|}{m_p})$
stopDist_a(p,v,a_b) = $vT + \left(\frac{a_{\max} + \overline{a}_s(p)}{2} + \frac{\overline{a}_c(p)}{2}\right)T^2$
 $+ \frac{brakeDist_a(\left(v + (a_{\max} + \overline{a}_s(p) + \overline{a}_c(p))T\right)^2, 0\right)$

Overview

- Part 1: Train Verification
- Introduction
- Techniques
- Controller
- Evaluation
- Summary

Limiting Undershoot while Maintaining Safety

[1] J. Brosseau and B. M. Ede, "Development of an adaptive predictive braking enforcement algorithm", Federal Railroad Administration, 2009.

Limiting Undershoot while Maintaining Safety

[1] J. Brosseau and B. M. Ede, "Development of an adaptive predictive braking enforcement algorithm", Federal Railroad Administration, 2009.

Summary

Proofs: https://doi.org/10.1184/R1/19542610

Generalizable Techniques

- Dealing with unknown functions
- Circular dependencies
- Taylor polynomials
- Ghost dynamics

Verified Model Generalizability

- Abstraction of physical details
- Nondeterministic controller

Experiments Controller limits undershoot while maintaining safety

Pt 2: CESAR: Control Envelope Synthesis via Angelic Refinements

Aditi Kabra Jonathan Laurent

Stefan Mitsch

André Platzer

Overview

Part 2: Synthesis

Introduction

- Problem Statement
- Game Logic and Solution
- Refinement
- Evaluation

Design by proof

Can we automate it?

Synthesis Pipeline

Synthesis procedure fills out the hard parts

Related work

Other Work This Work Controller *Envelope* Synthesis Controller Synthesis Techniques Bounds permissible controllers 7. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical Systems. Springer Cham (2017) Permits separation of safety critical and secondary 21. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyberphysical systems. Annual Reviews in Control 53, 30-50 (2022). doi: https://doi. concerns org/10.1016/j.arcontrol.2022.03.004 Can be used, e.g., as trusted envelope for machine 24. Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. learning LNCS, vol. 2034, pp. 433–446. Springer (2001) Numerical Safety Shields Symbolic 1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 Good for high dimension, infinite space/time problems 2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model, Statically computable RV 2014 Manual Verified Design Case Studies Automated 1. Platzer, A., Quesel, J.: European train control system: A case study in formal Faster verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, Potentially more scalable for complex problems . December 9-12, 2009.

Related work

Other Work	This Work
 Controller Synthesis Techniques Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical Systems. Springer Cham (2017) Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber- physical systems. Annual Reviews in Control 53, 30–50 (2022). doi: https://doi. org/10.1016/j.arcontrol.2022.03.004 Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. LNCS, vol. 2034, pp. 433–446. Springer (2001) 	 Controller <i>Envelope</i> Synthesis Bounds permissible controllers Permits separation of safety critical and secondary concerns Can be used, e.g., as trusted envelope for machine learning
 Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model, RV 2014 	SymbolicGood for high dimension, infinite space/time problemsStatically computable
 Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. 	AutomatedFasterPotentially more scalable for complex problems
Related work

Other Work	This Work
 Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical Systems. Springer Cham (2017) Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber- physical systems. Annual Reviews in Control 53, 30–50 (2022). doi: https://doi. org/10.1016/j.arcontrol.2022.03.004 Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. LNCS, vol. 2034, pp. 433–446. Springer (2001) 	 Controller <i>Envelope</i> Synthesis Bounds permissible controllers Permits separation of safety critical and secondary concerns Can be used, e.g., as trusted envelope for machine learning
 Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model, RV 2014 	SymbolicGood for high dimension, infinite space/time problemsStatically computable
 Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. 	Automated Faster Potentially more scalable for complex problems

Related work

Other Work This Work Controller *Envelope* Synthesis Controller Synthesis Techniques Bounds permissible controllers 7. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical Systems. Springer Cham (2017) Permits separation of safety critical and secondary 21. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyberphysical systems. Annual Reviews in Control 53, 30-50 (2022). doi: https://doi. concerns org/10.1016/j.arcontrol.2022.03.004 Can be used, e.g., as trusted envelope for machine 24. Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. learning LNCS, vol. 2034, pp. 433–446. Springer (2001) Numerical Safety Shields Symbolic 1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 Good for high dimension, infinite space/time problems 2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 3. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model, Statically computable RV 2014 Manual Verified Design Case Studies Automated 1. Platzer, A., Quesel, J.: European train control system: A case study in formal Faster • verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, Potentially more scalable for complex problems • December 9-12, 2009.

Overview

Part 2: Synthesis

Introduction

Problem Statement

- Game Logic and Solution
- Refinement
- Evaluation

prob
$$\equiv$$
 assum $\land \sqcup \rightarrow [((\cup_i (? \sqcup_i; act_i)); plant)^*]$ safe.

Fill in holes (| |) in a template with a propositional formula.

prob \equiv assum $\land \sqcup \rightarrow [((\cup_i (? \sqcup_i; act_i)); plant)^*]$ safe.

Fill in holes (| |) in a template with a propositional formula.

Conditions for controllability

Assumptions on the system

Fill in holes (I) in a template with a propositional formula. Conditions for controllability When is it ok to take action i? assum ∧ \square → [((\cup_i (? \square_i ; act_i)); plant)^{*}] safe. prob \equiv Branch between i possible actions Assumptions on the system

Fill in holes (I) in a template with a propositional formula. Conditions for controllability When is it ok to take action i? prob $\equiv \operatorname{assum} \land \sqcup \rightarrow [((\cup_i (! \sqcup_i; \operatorname{act}_i)); \operatorname{plant})^*]$ safe. Branch between i possible actions Assumptions on the system **Physical environment**

Fill in holes (| |) in a template with a propositional formula.

Example:

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts can be automatically synthesized by our proposed tool.

 $\mathsf{assum} \ | \ 1 \quad A > 0 \land B > 0 \land T > 0 \land v \ge 0$

Assumptions on the system

Fill in holes (| |) in a template with a propositional formula.

Example:

assum 1	$A>0 \wedge B>0 \wedge T>0$	$0 \wedge v \ge 0$
ctrlable 2	$\land [] \rightarrow$	[{ Conditions from necessary to safety

Fill in holes (| |) in a template with a propositional formula.

Example:

Fill in holes (| |) in a template with a propositional formula.

Example:

Fill in holes (| |) in a template with a propositional formula.

Example:

Fill in holes (| |) in a template with a propositional formula.

Example:

Problem: Example Solution

Fill in holes (**[]**) in a template.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts can be automatically synthesized by our proposed tool.

assum 1 $A > 0 \land B > 0 \land T > 0 \land v \ge 0$ $\land | e - p > v^2/2B | \rightarrow [\{$ ctrlable 2 There's enough space to stop if we start braking now (? ; a := A) 3 ctrl \cup (?] ; a := -B); 4 $(t := 0; \{ p' = v, v' = a, t' = 1 \& t \le T \land v \ge 0 \})$ plant 5 safe $[6]^* [(e - p > 0)]$

Problem: Example Solution

Fill in holes (| |) in a template.

Example:

assum
$$| 1 | A > 0 \land B > 0 \land T > 0 \land v \ge 0$$

ctrlable $| 2 \land \boxed{e - p > v^2/2B} \rightarrow [{$
 $f = 1 | 3 \quad ((? \boxed{e - p > vT + AT^2/2 + (v + AT)^2/2B}; a := A)$
There's enough space to stop if we accelerate for one time period and then keep braking
safe $| 6 | {}^*](e - p > 0)$

Problem: Example Solution

Fill in holes (| |) in a template.

Example:

	$A > 0 \land B > 0 \land T > 0 \land v \ge 0$	
ctrlable 2	$\land \boxed{e - p > v^2/2B} \rightarrow [\{$	
ctrl 3	$((?[e-p > vT + AT^2/2 + (v - t)]))$	$(+AT)^2/2B$; $a := A$)
4	\cup (? true ; $a := -B$));	You never make life worse by braking
plant 5	$(t := 0; \{p' = v, v' = a, t' = 1 \& t \}$	$t \le T \land v \ge 0\})$
safe 6	$^{*}](e - p > 0)$	

Solution

prob
$$\equiv$$
 assum $\land \square \rightarrow [((\cup_i (!\square_i; act_i)); plant)^*]$ safe.

Solution

Fill in holes (| |) in a template with a propositional formula.

prob
$$\equiv \operatorname{assum} \land \sqcup \rightarrow [((\cup_i (? \square_i; \operatorname{act}_i)); \operatorname{plant})^*] \operatorname{safe}.$$

1. Safety (valid dL formula)

2. Always some control option ((assum $\land I$) $\rightarrow \lor_i G_i$)

Quality of Solution

- Good solution: more permissive
- $S' \ge S$ when \vDash assum $\rightarrow (I \rightarrow I')$ and \vDash (assum $\land I$) $\rightarrow \land_i (G_i \rightarrow G'_i)$
- Unique optimum

Overview

Part 2: Synthesis

- Introduction
- Problem Statement
- Game Logic and Solution
- Refinement
- Evaluation

dL has nondeterminism ($a \coloneqq A \cup a \coloneqq B$)

Players resolve nondeterminism

Operators $(a := A \cup a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$

VS

Angelic Game ⟨(a≔A∩a≔B)⟩a=A Angel wins if in the end, a=A

Demonic Game $[(a := A \cap a := B)]a = A$ Demon wins if in the end, a=A

Axioms

dGl without loops: translation in first order logic.

dL has nondeterminism ($a \coloneqq A \cup a \coloneqq B$)

Players resolve nondeterminism

Operators $(a \coloneqq A \cup a \coloneqq B)$ $(a \coloneqq A \cap a \coloneqq B)$ $(a \coloneqq A \cap a \coloneqq B)$

 $\alpha \cap \beta, \ \alpha^{\times}, ?\phi^{\mathrm{d}}, \ \left\{ x' = f(x)Q \right\}^{d}$

Angelic Game
⟨(a:=A∩a:=B)⟩a=A
Angel wins if in the end, a=A

Demonic Game $[(a := A \cap a := B)]a = A$ Demon wins if in the end, a=A

Axioms

dGl without loops: translation in first order logic.

dL has nondeterminism ($a \coloneqq A \cup a \coloneqq B$)

Players resolve nondeterminism

VS

Operators $(a := A \cup a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$ Angelic Game
⟨(a:=A∩a:=B)⟩a=A
Angel wins if in the end, a=A

Demonic Game $[(a := A \cap a := B)]a = A$ Demon wins if in the end, a=A

Axioms

dGl without loops: translation in first order logic.

dL has nondeterminism ($a \coloneqq A \cup a \coloneqq B$)

Players resolve nondeterminism

Operators $(a := A \cup a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$

VS

Angelic Game (a≔A∩a≔B))a=A Angel wins if in the end, a=A **Demonic Game** $[(a \coloneqq A \cap a \coloneqq B)]a = A$ Demon wins if in the end, a=A Duality $\neg \langle \alpha \rangle \neg P$ [a]P $\langle \alpha \rangle \neg P$ $[\alpha]P$

Axioms

dGl without loops: translation in first order logic.

dL has nondeterminism ($a \coloneqq A \cup a \coloneqq B$)

Players resolve nondeterminism

Operators $(a := A \cup a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$ $(a := A \cap a := B)$

VS

Angelic Game
⟨(a:=A∩a:=B)⟩a=A
Angel wins if in the end, a=A

Demonic Game $[(a := A \cap a := B)]a = A$ Demon wins if in the end, a=A

Axioms

dGl without loops: translation in first order logic.

Optimal Solution

prob
$$\equiv$$
 assum $\land \sqcup \rightarrow [((\cup_i (? \sqcup_i; act_i)); plant)^*]$ safe.

The set of all states from which a perfect controller can keep the system safe forever

$$I^{\text{opt}} \equiv [((\cap_i \operatorname{act}_i); \operatorname{plant})^*]$$
 safe
Controller chooses in its best interest
By construction, loop invariant

Optimal Solution

prob
$$\equiv$$
 assum $\land \sqcup \rightarrow [((\cup_i (! \sqcup_i; act_i)); plant)^*]$ safe.

The set of all states from which a perfect controller can keep the system safe forever

$$I^{\text{opt}} \equiv [((\cap_i \text{act}_i); \text{plant})^*]$$
 safe

Controller chooses in its best interest

By construction, loop invariant

Allow any control action that is guaranteed to keep the system within I^{opt}

$$G_i^{\text{opt}} \equiv [\operatorname{act}_i; \operatorname{plant}] I^{\operatorname{opt}}.$$

Computing Propositional Arithmetic Solutions

• Easily checked at runtime

Computing Propositional Arithmetic Solutions

- Easily checked at runtime
- Use the semantics of dGL (which are in terms of FOL^*)
Computing Propositional Arithmetic Solutions

- Easily checked at runtime
- Use the semantics of dGL (which are in terms of FOL^*)
- *But two dGL constructions need more than FOL.

Computing Propositional Arithmetic Solutions

- Easily checked at runtime
- Use the semantics of dGL (which are in terms of FOL^*)
- *But two dGL constructions need more than FOL.

Overview

Part 2: Synthesis

- Introduction
- Problem Statement
- Game Logic and Solution

Refinement

• Evaluation

Refinement $I^{\text{opt}} \equiv [((\cap_i \operatorname{act}_i); \operatorname{plant})^*] \operatorname{safe}^{\text{Want to remove}}$

Action Choice Refinement

The game obtained by restricting the controller to one action

$$\left[\begin{pmatrix} a := -B; t := 0; \\ \left\{ p' = v, v' = a, t' = 1 \ t \le T \land v \ge 0 \right\} \right]^* e - p > 0$$

Is harder than the game where the controller chooses between multiple actions

$$\left[\begin{pmatrix} (a := -B \cap a := A); t := 0; \\ \{p' = v, v' = a, t' = 1 \ t \le T \land v \ge 0 \} \end{pmatrix}^* \right] e - p > 0$$

Action Choice Refinement

The game obtained by restricting the controller to one action

$$\begin{bmatrix} \left(a := -B; t := 0; \\ \left\{ p' = v, v' = a, t' = 1 \ t \le T \land v \ge 0 \right\} \right)^* \\ e - p > 0 \end{bmatrix}$$

Is harder than the game where the controller chooses between multiple actions

$$\left[\begin{pmatrix} (a := -B \cap a := A); t := 0; \\ \{p' = v, v' = a, t' = 1 \ t \le T \land v \ge 0 \} \end{pmatrix}^* \right] e - p > 0$$

One Shot Unrolling

Action Choice Refinement

The game obtained by restricting the controller to one action

$$\begin{bmatrix} (a := -B; t := 0; \\ \{p' = v, v' = a, t' = 1 \ t \le T \land v \ge 0 \})^* \end{bmatrix} e - p > 0$$
2

Is harder than the game where the controller chooses between multiple actions

$$\left[\begin{pmatrix} (a := -B \cap a := A); t := 0; \\ \{p' = v, v' = a, t' = 1 \ t \le T \land v \ge 0 \end{pmatrix} \right]^* e^{-p} = 0$$

One Shot Unrolling

One Shot Refinement

One Shot Refinement

- Action permanence: $(act_i; plant; act_i) \equiv (act_i; plant)$
- ▶ In practice: when a control action corresponds to a "mode" of behavior.

 1-shot unrolling lets the controller choose one action and run it forever.

1 iteration

 1-shot unrolling lets the controller choose one action and run it forever.

2 iterations

 1-shot unrolling lets the controller choose one action and run it forever.

• 1-shot unrolling lets the controller choose one action and run it forever.

- 1-shot unrolling lets the controller choose one action and run it forever.
- Bounded unrolling allows a "switch" in action choice

Bounded Unrolling

- n switches to reach the region I_o in which safety is guaranteed indefinitely
- Controller has chance to switch within $[\theta, \theta + T]$ window because plant can never execute for time greater than T

Bounded Unrolling

- n switches to reach the region I_o in which safety is guaranteed indefinitely
- Controller has chance to switch within $[\theta, \theta + T]$ window because plant can never execute for time greater than T

 $\begin{aligned} \mathsf{forever} &\equiv \left(\cap_{i \in \mathsf{P}} \operatorname{act}_{i} \right); \operatorname{plant}_{\infty} \\ \mathsf{step} &\equiv \left(\theta := *; \, ?\theta \ge 0 \right)^{d}; \\ \left(\cap_{i \in \mathsf{P}} \operatorname{act}_{i} \right); \, \operatorname{plant}_{\theta+T}; \, ?\operatorname{safe}^{d}; \, ?t \ge \theta \\ \\ \mathsf{Controller} \operatorname{chooses} \\ \mathsf{some} \operatorname{time} \theta \operatorname{in} \operatorname{the} \\ \\ \mathsf{future} \end{aligned} \end{aligned} \\ \begin{aligned} \mathsf{For} \operatorname{a} \operatorname{controller} \operatorname{choice} \\ \\ \mathsf{chosen} \operatorname{up} \operatorname{to} \operatorname{time} \theta \end{aligned} \\ \end{aligned} \\ \begin{aligned} \mathsf{While} \\ \\ \mathsf{safe} \end{aligned} \\ \end{aligned} \\ \begin{aligned} \mathsf{By} \operatorname{time} \theta \operatorname{the} \operatorname{controller} \\ \\ \mathsf{region} I^{n-1} \end{aligned}$

 $I^{n+1} \equiv I^n \lor [\text{step}] I^n \qquad I^0 \equiv [\text{forever}] \text{ safe}$

Dual Game

Algorithm: CESAR

• Recursively compute bounded unrolled invariants I^n .

Algorithm: CESAR

- Recursively compute bounded unrolled invariants I^n .
- Stop if either
 - Reached fixed point $(I^n = I^{n+1})$
 - Optimality check using dual succeeds (in all regions not in the invariant, can environment "win"?)
 - Unrolling budget reached

Algorithm: CESAR

- Recursively compute bounded unrolled invariants I^n .
- Stop if either
 - Reached fixed point $(I^n = I^{n+1})$
 - Optimality check using dual succeeds (in all regions not in the invariant, can environment "win"?)
 - Unrolling budget reached
- With resulting I, compute each hole fill using

$$G_i \equiv [\operatorname{act}_i; \operatorname{plant}]I$$

Overview

Part 2: Synthesis

- Introduction
- Problem Statement
- Game Logic and Solution
- Refinement
- Evaluation

Evaluation

Benchmark Suite with different control challenges

Table 2: Summary of the benchmark suite and most important control challenges.

Benchmark	Control Feature Introduced			
Gears	Many (namely 8) actions to choose from.			
ETCS	Nondeterministic, bounded acceleration (from case study [29]).			
Table Tennis	Introduce two-dimensional motion.			
Reservoir	Dynamics mixes variables that controller can and can't influence.			
Reaction	Conjunctive safety constraints.			
Merge	Disjunctive safety constraints.			
Wall	Requires state-dependent fallback actions.			
Parachute	Action switching restricted: cannot close parachute once open.			
Corridor	Requires unrolling fallback for optimal synthesis (Fig. 1).			
Sputtering Ca	r Unsolvable continuous dynamics.			

Evaluation

Benchmark	Synthesis Time (s)	Memory (MB)	Checking Time (s)
Gears	5.97	41.30	2.6
ETCS	4.32	40.96	7.6
Table Tennis	2.79	40.13	1.4
Reservoir	4.95	39.99	2.1
Reaction	9.93	41.10	3.1
Merge	3.30	40.22	4.7
Wall	3.74	40.33	11.7
Parachute	3.37	40.16	5.0
Corridor*	7.14	41.71	1.9
Sputtering Car	r 2.12	39.63	1.1

Future Work

• Handle hard dynamics

Unknown	Circular	Taylor	Ghost
Functions	Dependencies	Polynomials	Dynamics

• Generalize to differential game logic

Thank You!

Aditi Kabra https://aditink.github.io akabra@cs.cmu.edu