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Formal Verification
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Formal Model

Infinitely many possibilities 
checked once and for all

Proving in KeYmaera X Theorem Prover

2545 lines of proof tactic

Complete FRA 
Model[1]

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad 
Administration, 2009. 
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Other Proof Techniques
Taylor PolynomialCircular Dependencies

Ghost Trains

Problem: Davis resistance integrates poorly.

Solution: Taylor polynomial approximation.

Problem: Circular dependence while estimating worst 
case values.

Solution: Bootstrap cycle with naive values, then 
iterate.

Problem: Intermediate reasoning steps transcendental.

Solution: Reason about as ODE (here represents dynamics 
of a “ghost” train).
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Control Structure
Control code runs in a loop with some latency T (in our case, to the 
order of a second).
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End of movement authority: the train 
must stop by this point

Theorem "WP2/slopecurve_offset_airbrakes_1" 

Definitions 
    /* Acceleration coefficients. */ 
    Real a0;     /* Strict upper bound on maximal constant acceleration. */ 
    Real a1;     /* Accelerations that are linear in velocity. */ 
    Real a2;     /* Accelerations that are quadratic in velocity. */ 
    Real b0;     /* Maximal constant braking force (positive). */ 
    Real crvDer; /* Coefficient in derivative of horizontal curve. */ 
     
    /* Situational track setup */ 
    Real maxSlope;                 /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */ 
    Real T;                        /* Time control loop period / system reaction time. */ 
    Real slopeAcc(Real trainPos);  /* Slope acceleration map (where trainPos is measured along the 
sloped track rather than along flat land). a_c in the paper. */ 
    Real end;                      /* End of movement authority. e in the paper. */ 
    Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is 
measured along the sloped track rather than along flat land). a_c in the paper. */ 
    Real maxVertCur;               /* Maximal rate of change of slope (vertical curvature). h_{max} in the 
paper. */ 
    Real Rmin;                     /* Bound on friction due to horizontal curve (resistance at min radius). m_c in 
the paper. */ 
    Real Apb;                      /* maximum penalty brake acceleration */ 
    Real buildupThreshold;         /* Time offset until pressure brakes can be applied. */ 
    Real pressureChangeRate;       /* (Linear) rate of increase in acceleration due to air brakes when train 
is applying them. */ 
     
    /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period 
independently from particular curve or slope. */ 
    Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T; 
         
    /* Maximum acceleration due to slope. */ 
    Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope); 
     
    /* Maximum acceleration due to curve (negative since curves decelerate). */ 
    Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0); 

    /* The train will stop in at most this much distance if braking from speed vel. */ 
    Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)), 
        (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2); 
     
    /* The train will stop in at most this much distance if it accelerates for a time period and then brakes. 
*/ 
    Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel, 
slopeAcc(trainPos), curvature(trainPos)), 0) +  upperDist(vel, slopeAcc(trainPos), curvature(trainPos)); 

    /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the 
paper. */ 
    Real resistance(Real vel) = a1*vel + a2*vel^2; 
     
    /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity 
vel from position trainPos. */ 
    Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) + 
curvature(trainPos); 
     
    /* Upper bound on new velocity (increased for one time period). */ 
    Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel  
      + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel)) 
         + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T; 
     
    /* Upper bound on distance covered for one time period under acceleration. */ 
    Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*( 
          a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel)) 
          + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2; 

    /* Time till pipe pressure is at maximum given current pressure. */ 
    Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate; 
     
    /* Utility functions for absolute values: True iff |x|<=y */ 
    Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y); 
     
    /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical 
curve and curve derivatives. */ 
    Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x') 
      & \forall x' \forall x absLessEq((curvature(x))', crvDer*x'); 

    /* Assumptions on constants. */   
    Bool conditionsOnConsts() <->  
        a0>0                                                /* Strict upper bound on maximal constant acceleration, must be 
positive. */ 
        & b0>0                                              /* Maximal constant braking force (positive). */ 
        & a1<0                                              /* Accelerations that are linear in velocity. */ 
        & a2<0                                              /* Accelerations that are quadratic in velocity. */ 
        & maxSlope>=0                                       /* Greatest allowed acceleration due to slope gradient. */ 
        & T>0                                               /* Time control loop period / system reaction time. */ 
        & b0-maxSlope>0                                     /* Brakes more powerful than effect of slope. */ 
        & a0-maxSlope>0                                     /* Engine more powerful than effect of slope. */ 
        & a0-maxSlope+Rmin>0                                /* Engine more powerful than curve and slope. */ 
        & maxVertCur>=0                                     /* Maximal rate of change of slope (vertical curvature). */ 
        & Rmin<=0                                           /* Bound on friction due to horizontal curve (resistance at min 
radius). */ 
        & crvDer>=0                                         /* Coefficient in derivative of horizontal curve. */ 
        & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0)  /* Track is built correctly: 
all curvatures along actual track satisfy bound on friction due to curve. */ 
        & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope)       /* Track is built correctly: all slope 
accelerations along actual track are within maxSlope. */ 
        & Apb<0                                             /* Maximally engaged air pressure brakes provide negative 
acceleration. */ 
        & buildupThreshold>0                                /* Air pressure brake propagation time is some positive 
numbers. */ 
        & pressureChangeRate<0;                             /* The rate at which acceleration provided by the 
pressure brakes increases. */ 
End. 

ProgramVariables 
    Real trainPos;     /* The position of the train. */ 
    Real vel;          /* The speed of the train. */ 
    Real trainAcc;     /* Acceleration/deceleration control, i.e., engine acceleration and braking. */ 
    Real buildup;      /* How long pipe pressure has been building up. */ 
    Real brakeSlope;   /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */ 
    Real airBrake;     /* Acceleration due to current pipe pressure. */ 
End. 

Problem 
  end-trainPos>brakingDistance(vel, 0) 
  & conditionsOnConsts() 
  & limitedTrackChange() 
  & vel>=0 
  & brakeSlope=0 
  & airBrake=0 
  -> 
  [ 
        { 
            t:=0; 
            {{?(end-trainPos > stoppingDistance(trainPos, vel)); 
                trainAcc:=*; 
                ?(-b0<=trainAcc & trainAcc<a0);} 

Free Driving

Brake

Train Motion for at most time T

p e
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End of movement authority: the train 
must stop by this point

Upper bound on distance traveled before 
train stops if you accelerate for one 
control cycle and brake after that.

Theorem "WP2/slopecurve_offset_airbrakes_1" 

Definitions 
    /* Acceleration coefficients. */ 
    Real a0;     /* Strict upper bound on maximal constant acceleration. */ 
    Real a1;     /* Accelerations that are linear in velocity. */ 
    Real a2;     /* Accelerations that are quadratic in velocity. */ 
    Real b0;     /* Maximal constant braking force (positive). */ 
    Real crvDer; /* Coefficient in derivative of horizontal curve. */ 
     
    /* Situational track setup */ 
    Real maxSlope;                 /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */ 
    Real T;                        /* Time control loop period / system reaction time. */ 
    Real slopeAcc(Real trainPos);  /* Slope acceleration map (where trainPos is measured along the 
sloped track rather than along flat land). a_c in the paper. */ 
    Real end;                      /* End of movement authority. e in the paper. */ 
    Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is 
measured along the sloped track rather than along flat land). a_c in the paper. */ 
    Real maxVertCur;               /* Maximal rate of change of slope (vertical curvature). h_{max} in the 
paper. */ 
    Real Rmin;                     /* Bound on friction due to horizontal curve (resistance at min radius). m_c in 
the paper. */ 
    Real Apb;                      /* maximum penalty brake acceleration */ 
    Real buildupThreshold;         /* Time offset until pressure brakes can be applied. */ 
    Real pressureChangeRate;       /* (Linear) rate of increase in acceleration due to air brakes when train 
is applying them. */ 
     
    /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period 
independently from particular curve or slope. */ 
    Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T; 
         
    /* Maximum acceleration due to slope. */ 
    Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope); 
     
    /* Maximum acceleration due to curve (negative since curves decelerate). */ 
    Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0); 

    /* The train will stop in at most this much distance if braking from speed vel. */ 
    Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)), 
        (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2); 
     
    /* The train will stop in at most this much distance if it accelerates for a time period and then brakes. 
*/ 
    Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel, 
slopeAcc(trainPos), curvature(trainPos)), 0) +  upperDist(vel, slopeAcc(trainPos), curvature(trainPos)); 

    /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the 
paper. */ 
    Real resistance(Real vel) = a1*vel + a2*vel^2; 
     
    /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity 
vel from position trainPos. */ 
    Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) + 
curvature(trainPos); 
     
    /* Upper bound on new velocity (increased for one time period). */ 
    Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel  
      + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel)) 
         + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T; 
     
    /* Upper bound on distance covered for one time period under acceleration. */ 
    Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*( 
          a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel)) 
          + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2; 

    /* Time till pipe pressure is at maximum given current pressure. */ 
    Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate; 
     
    /* Utility functions for absolute values: True iff |x|<=y */ 
    Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y); 
     
    /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical 
curve and curve derivatives. */ 
    Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x') 
      & \forall x' \forall x absLessEq((curvature(x))', crvDer*x'); 

    /* Assumptions on constants. */   
    Bool conditionsOnConsts() <->  
        a0>0                                                /* Strict upper bound on maximal constant acceleration, must be 
positive. */ 
        & b0>0                                              /* Maximal constant braking force (positive). */ 
        & a1<0                                              /* Accelerations that are linear in velocity. */ 
        & a2<0                                              /* Accelerations that are quadratic in velocity. */ 
        & maxSlope>=0                                       /* Greatest allowed acceleration due to slope gradient. */ 
        & T>0                                               /* Time control loop period / system reaction time. */ 
        & b0-maxSlope>0                                     /* Brakes more powerful than effect of slope. */ 
        & a0-maxSlope>0                                     /* Engine more powerful than effect of slope. */ 
        & a0-maxSlope+Rmin>0                                /* Engine more powerful than curve and slope. */ 
        & maxVertCur>=0                                     /* Maximal rate of change of slope (vertical curvature). */ 
        & Rmin<=0                                           /* Bound on friction due to horizontal curve (resistance at min 
radius). */ 
        & crvDer>=0                                         /* Coefficient in derivative of horizontal curve. */ 
        & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0)  /* Track is built correctly: 
all curvatures along actual track satisfy bound on friction due to curve. */ 
        & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope)       /* Track is built correctly: all slope 
accelerations along actual track are within maxSlope. */ 
        & Apb<0                                             /* Maximally engaged air pressure brakes provide negative 
acceleration. */ 
        & buildupThreshold>0                                /* Air pressure brake propagation time is some positive 
numbers. */ 
        & pressureChangeRate<0;                             /* The rate at which acceleration provided by the 
pressure brakes increases. */ 
End. 

ProgramVariables 
    Real trainPos;     /* The position of the train. */ 
    Real vel;          /* The speed of the train. */ 
    Real trainAcc;     /* Acceleration/deceleration control, i.e., engine acceleration and braking. */ 
    Real buildup;      /* How long pipe pressure has been building up. */ 
    Real brakeSlope;   /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */ 
    Real airBrake;     /* Acceleration due to current pipe pressure. */ 
End. 

Problem 
  end-trainPos>brakingDistance(vel, 0) 
  & conditionsOnConsts() 
  & limitedTrackChange() 
  & vel>=0 
  & brakeSlope=0 
  & airBrake=0 
  -> 
  [ 
        { 
            t:=0; 
            {{?(end-trainPos > stoppingDistance(trainPos, vel)); 
                trainAcc:=*; 
                ?(-b0<=trainAcc & trainAcc<a0);} 

Free Driving

Brake

Train Motion for at most time T
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Control Structure
Control code runs in a loop with some latency T (in our case, to the 
order of a second).
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Theorem "WP2/slopecurve_offset_airbrakes_1" 

Definitions 
    /* Acceleration coefficients. */ 
    Real a0;     /* Strict upper bound on maximal constant acceleration. */ 
    Real a1;     /* Accelerations that are linear in velocity. */ 
    Real a2;     /* Accelerations that are quadratic in velocity. */ 
    Real b0;     /* Maximal constant braking force (positive). */ 
    Real crvDer; /* Coefficient in derivative of horizontal curve. */ 
     
    /* Situational track setup */ 
    Real maxSlope;                 /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */ 
    Real T;                        /* Time control loop period / system reaction time. */ 
    Real slopeAcc(Real trainPos);  /* Slope acceleration map (where trainPos is measured along the 
sloped track rather than along flat land). a_c in the paper. */ 
    Real end;                      /* End of movement authority. e in the paper. */ 
    Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is 
measured along the sloped track rather than along flat land). a_c in the paper. */ 
    Real maxVertCur;               /* Maximal rate of change of slope (vertical curvature). h_{max} in the 
paper. */ 
    Real Rmin;                     /* Bound on friction due to horizontal curve (resistance at min radius). m_c in 
the paper. */ 
    Real Apb;                      /* maximum penalty brake acceleration */ 
    Real buildupThreshold;         /* Time offset until pressure brakes can be applied. */ 
    Real pressureChangeRate;       /* (Linear) rate of increase in acceleration due to air brakes when train 
is applying them. */ 
     
    /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period 
independently from particular curve or slope. */ 
    Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T; 
         
    /* Maximum acceleration due to slope. */ 
    Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope); 
     
    /* Maximum acceleration due to curve (negative since curves decelerate). */ 
    Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0); 

    /* The train will stop in at most this much distance if braking from speed vel. */ 
    Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)), 
        (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2); 
     
    /* The train will stop in at most this much distance if it accelerates for a time period and then brakes. 
*/ 
    Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel, 
slopeAcc(trainPos), curvature(trainPos)), 0) +  upperDist(vel, slopeAcc(trainPos), curvature(trainPos)); 

    /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the 
paper. */ 
    Real resistance(Real vel) = a1*vel + a2*vel^2; 
     
    /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity 
vel from position trainPos. */ 
    Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) + 
curvature(trainPos); 
     
    /* Upper bound on new velocity (increased for one time period). */ 
    Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel  
      + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel)) 
         + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T; 
     
    /* Upper bound on distance covered for one time period under acceleration. */ 
    Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*( 
          a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel)) 
          + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2; 

    /* Time till pipe pressure is at maximum given current pressure. */ 
    Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate; 
     
    /* Utility functions for absolute values: True iff |x|<=y */ 
    Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y); 
     
    /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical 
curve and curve derivatives. */ 
    Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x') 
      & \forall x' \forall x absLessEq((curvature(x))', crvDer*x'); 

    /* Assumptions on constants. */   
    Bool conditionsOnConsts() <->  
        a0>0                                                /* Strict upper bound on maximal constant acceleration, must be 
positive. */ 
        & b0>0                                              /* Maximal constant braking force (positive). */ 
        & a1<0                                              /* Accelerations that are linear in velocity. */ 
        & a2<0                                              /* Accelerations that are quadratic in velocity. */ 
        & maxSlope>=0                                       /* Greatest allowed acceleration due to slope gradient. */ 
        & T>0                                               /* Time control loop period / system reaction time. */ 
        & b0-maxSlope>0                                     /* Brakes more powerful than effect of slope. */ 
        & a0-maxSlope>0                                     /* Engine more powerful than effect of slope. */ 
        & a0-maxSlope+Rmin>0                                /* Engine more powerful than curve and slope. */ 
        & maxVertCur>=0                                     /* Maximal rate of change of slope (vertical curvature). */ 
        & Rmin<=0                                           /* Bound on friction due to horizontal curve (resistance at min 
radius). */ 
        & crvDer>=0                                         /* Coefficient in derivative of horizontal curve. */ 
        & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0)  /* Track is built correctly: 
all curvatures along actual track satisfy bound on friction due to curve. */ 
        & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope)       /* Track is built correctly: all slope 
accelerations along actual track are within maxSlope. */ 
        & Apb<0                                             /* Maximally engaged air pressure brakes provide negative 
acceleration. */ 
        & buildupThreshold>0                                /* Air pressure brake propagation time is some positive 
numbers. */ 
        & pressureChangeRate<0;                             /* The rate at which acceleration provided by the 
pressure brakes increases. */ 
End. 

ProgramVariables 
    Real trainPos;     /* The position of the train. */ 
    Real vel;          /* The speed of the train. */ 
    Real trainAcc;     /* Acceleration/deceleration control, i.e., engine acceleration and braking. */ 
    Real buildup;      /* How long pipe pressure has been building up. */ 
    Real brakeSlope;   /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */ 
    Real airBrake;     /* Acceleration due to current pipe pressure. */ 
End. 

Problem 
  end-trainPos>brakingDistance(vel, 0) 
  & conditionsOnConsts() 
  & limitedTrackChange() 
  & vel>=0 
  & brakeSlope=0 
  & airBrake=0 
  -> 
  [ 
        { 
            t:=0; 
            {{?(end-trainPos > stoppingDistance(trainPos, vel)); 
                trainAcc:=*; 
                ?(-b0<=trainAcc & trainAcc<a0);} 

Train Motion for at most time T

Only if there is a sufficient distance margin

Always allow braking

Allow acceleration

Brake

Free Driving



Control Structure
Control code runs in a loop with some latency T (in our case, to the 
order of a second).
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Theorem "WP2/slopecurve_offset_airbrakes_1" 

Definitions 
    /* Acceleration coefficients. */ 
    Real a0;     /* Strict upper bound on maximal constant acceleration. */ 
    Real a1;     /* Accelerations that are linear in velocity. */ 
    Real a2;     /* Accelerations that are quadratic in velocity. */ 
    Real b0;     /* Maximal constant braking force (positive). */ 
    Real crvDer; /* Coefficient in derivative of horizontal curve. */ 
     
    /* Situational track setup */ 
    Real maxSlope;                 /* Greatest allowed acceleration due to slope gradient. m_s in the paper. */ 
    Real T;                        /* Time control loop period / system reaction time. */ 
    Real slopeAcc(Real trainPos);  /* Slope acceleration map (where trainPos is measured along the 
sloped track rather than along flat land). a_c in the paper. */ 
    Real end;                      /* End of movement authority. e in the paper. */ 
    Real curvature(Real trainPos); /* Acceleration due to curve resistance map (where trainPos is 
measured along the sloped track rather than along flat land). a_c in the paper. */ 
    Real maxVertCur;               /* Maximal rate of change of slope (vertical curvature). h_{max} in the 
paper. */ 
    Real Rmin;                     /* Bound on friction due to horizontal curve (resistance at min radius). m_c in 
the paper. */ 
    Real Apb;                      /* maximum penalty brake acceleration */ 
    Real buildupThreshold;         /* Time offset until pressure brakes can be applied. */ 
    Real pressureChangeRate;       /* (Linear) rate of increase in acceleration due to air brakes when train 
is applying them. */ 
     
    /* Upper bound on velocity for current velocity vel at acceleration a0 for one time period 
independently from particular curve or slope. */ 
    Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope)*T; 
         
    /* Maximum acceleration due to slope. */ 
    Real maxSlopeAcc(Real slopeAcc, Real vel) = min(slopeAcc+(maxVertCur*T)*vel, maxSlope); 
     
    /* Maximum acceleration due to curve (negative since curves decelerate). */ 
    Real maxCurveAcc(Real curvature, Real vel) = min((curvature+crvDer*vel*T), 0); 

    /* The train will stop in at most this much distance if braking from speed vel. */ 
    Real brakingDistance(Real vel, Real buildup) = min(vel^2/(2*(b0-maxSlope)), 
        (vel-(buildupT(buildup)*(b0-maxSlope)))^2/(2*(b0-maxSlope)) + vel*buildupT(buildup) + 1/2*(b0-
maxSlope)*buildupT(buildup)^2); 
     
    /* The train will stop in at most this much distance if it accelerates for a time period and then brakes. 
*/ 
    Real stoppingDistance(Real trainPos, Real vel) = brakingDistance(upperVel(a0, vel, 
slopeAcc(trainPos), curvature(trainPos)), 0) +  upperDist(vel, slopeAcc(trainPos), curvature(trainPos)); 

    /* Velocity-dependent part of the acceleration that is always negative (since resistance). a_r in the 
paper. */ 
    Real resistance(Real vel) = a1*vel + a2*vel^2; 
     
    /* Total acceleration acting on the train at any point for a controlled acceleration trainAcc at velocity 
vel from position trainPos. */ 
    Real acc(Real trainAcc, Real vel, Real trainPos) = trainAcc + slopeAcc(trainPos) + resistance(vel) + 
curvature(trainPos); 
     
    /* Upper bound on new velocity (increased for one time period). */ 
    Real upperVel(Real trainAcc, Real vel, Real slopeAcc, Real curvature) = vel  
      + (trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel)) 
         + maxCurveAcc(curvature, baseUpperV(trainAcc, vel)))*T; 
     
    /* Upper bound on distance covered for one time period under acceleration. */ 
    Real upperDist(Real vel, Real slopeAcc, Real curvature) = vel*T + 1/2*( 
          a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel)) 
          + maxCurveAcc(curvature, baseUpperV(a0, vel)))*T^2; 

    /* Time till pipe pressure is at maximum given current pressure. */ 
    Real buildupT(Real buildup) = (Apb-buildup)/pressureChangeRate; 
     
    /* Utility functions for absolute values: True iff |x|<=y */ 
    Bool absLessEq(Real x, Real y) <-> (x<=y & -x<=y); 
     
    /* Track is built correctly: all changes in slope along actual track are bounded by maximal vertical 
curve and curve derivatives. */ 
    Bool limitedTrackChange() <-> \forall x' \forall x absLessEq((slopeAcc(x))', maxVertCur*x') 
      & \forall x' \forall x absLessEq((curvature(x))', crvDer*x'); 

    /* Assumptions on constants. */   
    Bool conditionsOnConsts() <->  
        a0>0                                                /* Strict upper bound on maximal constant acceleration, must be 
positive. */ 
        & b0>0                                              /* Maximal constant braking force (positive). */ 
        & a1<0                                              /* Accelerations that are linear in velocity. */ 
        & a2<0                                              /* Accelerations that are quadratic in velocity. */ 
        & maxSlope>=0                                       /* Greatest allowed acceleration due to slope gradient. */ 
        & T>0                                               /* Time control loop period / system reaction time. */ 
        & b0-maxSlope>0                                     /* Brakes more powerful than effect of slope. */ 
        & a0-maxSlope>0                                     /* Engine more powerful than effect of slope. */ 
        & a0-maxSlope+Rmin>0                                /* Engine more powerful than curve and slope. */ 
        & maxVertCur>=0                                     /* Maximal rate of change of slope (vertical curvature). */ 
        & Rmin<=0                                           /* Bound on friction due to horizontal curve (resistance at min 
radius). */ 
        & crvDer>=0                                         /* Coefficient in derivative of horizontal curve. */ 
        & \forall trainPos (Rmin<=curvature(trainPos) & curvature(trainPos)<=0)  /* Track is built correctly: 
all curvatures along actual track satisfy bound on friction due to curve. */ 
        & \forall trainPos absLessEq(slopeAcc(trainPos), maxSlope)       /* Track is built correctly: all slope 
accelerations along actual track are within maxSlope. */ 
        & Apb<0                                             /* Maximally engaged air pressure brakes provide negative 
acceleration. */ 
        & buildupThreshold>0                                /* Air pressure brake propagation time is some positive 
numbers. */ 
        & pressureChangeRate<0;                             /* The rate at which acceleration provided by the 
pressure brakes increases. */ 
End. 

ProgramVariables 
    Real trainPos;     /* The position of the train. */ 
    Real vel;          /* The speed of the train. */ 
    Real trainAcc;     /* Acceleration/deceleration control, i.e., engine acceleration and braking. */ 
    Real buildup;      /* How long pipe pressure has been building up. */ 
    Real brakeSlope;   /* pressureChangeRate if controller has chosen to brake, 0 otherwise. */ 
    Real airBrake;     /* Acceleration due to current pipe pressure. */ 
End. 

Problem 
  end-trainPos>brakingDistance(vel, 0) 
  & conditionsOnConsts() 
  & limitedTrackChange() 
  & vel>=0 
  & brakeSlope=0 
  & airBrake=0 
  -> 
  [ 
        { 
            t:=0; 
            {{?(end-trainPos > stoppingDistance(trainPos, vel)); 
                trainAcc:=*; 
                ?(-b0<=trainAcc & trainAcc<a0);} 

Control Envelope

{ 
    t:=0; 
    { 
      { ? ( -  > stoppingDistance( , , ) ); 

        :=*; ?(- ); 
        :=0; :=0; 
      }  
      { :=- ; := } 

    } 

    { = , = ,   

      &  &   
    } 
}*

 # $ $ % &'
&( '!&) ≤ &( ≤ &!&)
!' &'
∪
&( '!&) !' !$;  

 $′ % %′ &( + max(&',  &'!&)) + &"($) + &*($) + &+(%) &′ ' = !',  ,′ = 1
, ≤ - % ≥ 0

Brake

Free Driving

Train Motion for at most time T



Envelope: Where the Complexity is
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Overview

Part 1: Train Verification 

• Introduction 

• Techniques 

• Controller 

• Evaluation 

• Summary
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Limiting Undershoot while Maintaining Safety

23
[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad Administration, 2009. 

Start braking

Train stops

End of movement authority
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Limiting Undershoot while Maintaining Safety

Start braking

Train stops

End of movement authority

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad Administration, 2009. 



Summary

e

25

Verified controller for full FRA model dynamics. KeYmaera X proofs available online

Experiments 
Controller limits undershoot while maintaining 
safety

Generalizable Techniques 
• Dealing with unknown functions 
• Circular dependencies 
• Taylor polynomials 
• Ghost dynamics 

Verified Model Generalizability 
• Abstraction of physical details 
• Nondeterministic controller

Proofs: https://doi.org/10.1184/R1/19542610



Pt 2: CESAR: Control Envelope Synthesis via 
Angelic Refinements 

26

Aditi Kabra  Jonathan Laurent        Stefan Mitsch        André Platzer



Overview

Part 2: Synthesis 
• Introduction 
• Problem Statement 

• Game Logic and Solution 

• Refinement 

• Evaluation

27



Design by proof

28

Proving in KeYmaera X 

Theorem Prover

FRA Model 
(a few 
equations)

Formal Model

Conjecture 
a Model Try Proof

Proof fails

30+ proof attempts!

27

Can we automate it?



Synthesis Pipeline

Model Template
Synthesis procedure 

fills out the hard parts Control Envelope
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Related work
Controller Synthesis Techniques Controller Envelope Synthesis

• Bounds permissible controllers 
• Permits separation of safety critical and secondary 

concerns 
• Can be used, e.g., as trusted envelope for machine 

learning

Numerical Safety Shields Symbolic

• Good for high dimension, infinite space/time problems 
• Statically computable

1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 
3. ModelPlex: Verified Runtime Validation of  Verified Cyber-Physical System Model, 

RV 2014

Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal 

verification. In: Formal Methods and Software Engineering, 11th International 
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, 
December 9-12, 2009.

• Faster 
• Potentially more scalable for complex problems

30
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Problem
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Fill in holes (   ) in a template with a propositional formula.
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Fill in holes (   ) in a template with a propositional formula.

Initial Assumptions

Control Loop Safety Contract
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Fill in holes (   ) in a template with a propositional formula.

Assumptions on the system

Conditions for controllability

Branch between i 
possible actions

When is it ok to take action i?

Physical environment
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Fill in holes (   ) in a template with a propositional formula.

Example:
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Fill in holes (   ) in a template with a propositional formula.

Example:

Assumptions on the system



Problem
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Example:

Conditions from necessary to safety

Fill in holes (   ) in a template with a propositional formula.
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Fill in holes (   ) in a template with a propositional formula.

Example:

When is it ok to accelerate?
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Fill in holes (   ) in a template with a propositional formula.

Example:

When is it ok to brake?
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Fill in holes (   ) in a template with a propositional formula.

Example:

System differential equation



Problem
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Fill in holes (   ) in a template with a propositional formula.

Example:

Safety contract



Problem: Example Solution
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Fill in holes (   ) in a template.

Example:

There’s enough space to stop if we start braking now



Problem: Example Solution
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Fill in holes (   ) in a template.

Example:

There’s enough space to stop if we accelerate for one time period and then keep braking



Problem: Example Solution
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Fill in holes (   ) in a template.

Example:

You never make life worse by braking



Solution

44

Fill in holes (   ) in a template with a propositional formula.



Solution

44

Fill in holes (   ) in a template with a propositional formula.

1. Safety (valid dL formula) 
2. Always some control option ( )(assum ∧ .) → ∨/  0/ 

Aditi Nandkishor Kabra
I

Aditi Nandkishor Kabra
G



Quality of Solution

45

When can the train Accelerate?

When False (never)

Safe Not Useful

When can the train Accelerate?

When ! − " > (# + $% )2

2&
Safe Useful

• Good solution: more permissive
• !" ≥ ! when ⊨ assum → * → *" and ⊨ assum ∧ * →∧, (., → .,")
• Unique optimum
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Background: Game Logic
dL has nondeterminism

47

(& ≔ 1 ∪ & ≔ 2)

vs

Players resolve nondeterminism

(& ≔ 1 ∪ & ≔ 2)
Operators

(& ≔ 1 ∩ & ≔ 2)

Angelic Game

Demonic Game

[ ]  
Demon wins if in the end, a=A
(& ≔ 1 ∩ & ≔ 2) & = 1

Duality

3 ∩ 4,  3×, ?5d ,  {)′ = 6())7}8

¬⟨3⟩¬9    ↔         [&]9

Axioms

dGl without loops: transla~on 
in first order logic. 

[(v≔1∩v≔-1);{x^′=v}]x≠0

≡[(v≔1)][{x^′=v}]x≠0∨
[(v≔-1)][{x^′=v}]x≠0

≡[{x^′=1}]x≠0∨[{x^′=-1}]x≠0

≡∀t≥0x+t≠0∨∀t≥0x-t≠0

≡x>0∨x<0

⟨(a≔A∩a≔B)⟩a=A
Angel wins if in the end, a=A

! ¬#! #
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Optimal Solution

52

Controller chooses in its best interest

The set of all states from which a perfect controller can keep the system safe forever

By construction, Ioop invariant

Allow any control action that is guaranteed to keep the system within !"#$

Aditi Nandkishor Kabra
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• Easily checked at runtime

53



Computing Propositional Arithmetic Solutions

• Easily checked at runtime

• Use the semantics of dGL (which are in terms of ) :;<∗

53



Computing Propositional Arithmetic Solutions

• Easily checked at runtime

• Use the semantics of dGL (which are in terms of ) :;<∗

• *But two dGL constructions need more than .:;<

53



Computing Propositional Arithmetic Solutions

• Easily checked at runtime

• Use the semantics of dGL (which are in terms of ) :;<∗

• *But two dGL constructions need more than .:;<

• Loops: Defined in terms of fixed point 

• Differential equations: Presupposes an ODE solution

53

Approximate with “Refinement”

Approximate
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Refinement
Want to remove 

this
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Refinement
Want to remove 

this

Action Choice 
Refinement

1-shot 
Unrolling

Bounded 
Fallback 

Unrolling

If Action 
Permanence 

then

Iteratively 
improved 

by
55



Action Choice Refinement

56

The game obtained by restricting the controller 
to one action

Is harder than the game where the controller 
chooses between multiple actions

0 ≔ − 2; , ≔ 0;

{$′ = %, %′ = &, ,′ = 1  , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0
(0 ≔ − 2 ∩ 0 ≔ 3); , ≔ 0;

{$′ = %, %′ = &, ,′ = 1  , ≤ - ∧ % ≥ 0}
∗

 # − $ > 0
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One Shot Refinement

57

[& ≔ − 2;  {$′ = %, %′ = &, ,′ = 1  % ≥ 0}]# − $ > 0

∀,(% − 2, ≥ 0  → $ + %, − 2,2

2 > #) 

. =

Quantifier Elimination

Symbolic Execution

! + #$
2& > (	



One Shot Refinement

57

 Action permanence: 

 In practice: when a control action corresponds to a “mode” of behavior.

[& ≔ − 2;  {$′ = %, %′ = &, ,′ = 1  % ≥ 0}]# − $ > 0

∀,(% − 2, ≥ 0  → $ + %, − 2,2

2 > #) 

. =

Quantifier Elimination

Symbolic Execution

! + #$
2& > (	



One-shot Unrolling: Example

58

• 1-shot unrolling lets the controller choose one action and run it 
forever.

1 iteration 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice
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• 1-shot unrolling lets the controller choose one action and run it 
forever.

1 iteration2 iterations 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice



Bounded Unrolling

64

• ! switches to reach the region "# in which safety is guaranteed 
indefinitely
• Controller has chance to switch within [%, % + (] window because 

plant can never execute for time greater than T



Bounded Unrolling
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Controller chooses 
some time  in the 

future
= For a controller choice 

chosen up to time =

By time  the controller 
reaches established safe 

region 

=

.>−1

While 
staying 

safe

• ! switches to reach the region "# in which safety is guaranteed 
indefinitely
• Controller has chance to switch within [%, % + (] window because 

plant can never execute for time greater than T



Dual Game
Optimal?

or

Duality

¬⟨3⟩¬9    ↔         [&]9

Check Environment Game 
 (  )⟨3⟩¬9??
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Algorithm: CESAR

• Recursively compute bounded unrolled invariants ..>
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Algorithm: CESAR

• Recursively compute bounded unrolled invariants ..>

• Stop if either 

• Reached fixed point =  

• Optimality check using dual succeeds (in all regions not in the 
invariant, can environment “win”?) 

• Unrolling budget reached

(.> .>+1)
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Algorithm: CESAR

• Recursively compute bounded unrolled invariants ..>

• Stop if either 

• Reached fixed point =  

• Optimality check using dual succeeds (in all regions not in the 
invariant, can environment “win”?) 

• Unrolling budget reached

(.> .>+1)

• With resulting , compute each hole fill using.
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Overview

Part 2: Synthesis 

• Introduction 

• Problem Statement 

• Game Logic and Solution 

• Refinement 

• Evaluation
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Evaluation
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Benchmark Suite with different control challenges



Evaluation
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Future Work
• Handle hard dynamics 

• Generalize to differential game logic

Time 
Triggered 
Control

Event 
Triggered 
Control

Free 
Assignments

Adversarial 
Agents

Unknown 
Functions

Circular 
Dependencies

Taylor 
Polynomials

Ghost 
Dynamics
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Thank You!

Aditi Kabra 

https://aditink.github.io 

akabra@cs.cmu.edu
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