

Cyber Physical Systems

={}; (e){ t=_[el={}; b.
[1])===!1&&e.stopOnFalse){r=!1; }n=!
:r&&(s=t,c(r))} }, remove
u=[1], },disable: ()
(){ P. (

, r={state: () {
omise)7e. ().

n},always:
(n.resolve). (n.re
((){n=s},t[1%e] [2].disable,t[2] [2].
,n=h. (1S r=h;

(r):;r>t;t++)n[t]&&b.

)[o],r. .cssText=
()),hrefNormalized:

y UdH

&

L+

a;HaqHas(p)Har(v) Hae(p)ia, = my,

[T bmax 7amax]

0o =Max(ap,Abmax) 2

Overview

Part 1

Design Verified Train Protection

System Case Study

.
.

Human Effort Intensive

Towards

Generalization
Automation

Part 2

Control Envelope Synthesis

Theoretical
Characterization by
Hybrid Games

Solution Computation by
Refinement

Benchmarks

Pt 1: Verified Train Controllers for the Federal
Railroad Administration Train Kinematics
odel

Batancing Competing e and traclcForces

(*’Q
vy
&1)

Aditi Kabra Stefan Mitsch André Platzer

(EMSOFT 2022

Supported by FRA contract
number 693JJ620C000025

@0

Train Control: Complicated

End of movement authority: the train must
o stop by this point

e

Gravity

Train Control: Complicated

End of movement authority: the train must
stop by this point

Acceleration

T

Resistance

v

Gravity

Train Control: Complicated

End of movement authority: the train must
stop by this point

Acceleration

T

Resistance

Train Control: Complicated

TN
Ve
rr)
Vs
, o o
/ - \ N
7’ \ N
- - AN N
-~ A S
- \ ~
/’ \ ~"—’—”’ €
~ S===--"
~ - -
~ -
N e e e =—
a3
i
%) :
o Time since brake
ravit icati
y application
Zg%
OC)ac\ i
|> _ Air brake
Acceleration T acceleration
.

Resistance

Formal Verification

'l
.
h
Complete FRA - wupos 5.0
Modell1] ot Sow
] iveraces B P -« Pl B} P
Glddel Vaowouns W

2545 lines of proof tactic

Formal Model

feppy.a

Proot: v All goals closed

roumh i

L LIRSl o AL R I A i
re Sanpeigt e | ey s 1722] Provirel ngngabgtel ol
L. ! ol B boam 0 ot boee " A B
5 0at ol o™ ‘e I | snellogwe ® s I » B
L T, | By N D, 7 won | LA) R0 At bt vl hamgaity
dopr tn b’ o bl 0 | b A e 3
eI L L s A ALt Nl

L DI PLERE LSS At AR T L S
VAPRACT

ORIt e

S Ay

10 00eACc 1) e
Paaslti ol o omree | « N :) N~
- AT el loge Tt L Plialr) »y .
7 dmprensarwt Nangefian lunlsn vioh YL T L » LS
tolrsitraina i rlDmrtinlm sl ol lsaaliage!l Ve
R e e AL Il) Lo s . 2 =1
attisV i ie i mmialgh 10 1w CAAR P ~ TS R -1

Infinitely many possibilities
checked once and for all

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad

Administration, 2009.

Formal Verification

I
11]

EEEEEEEEE RREEE !

e L e T

Boal sCurvnhed Mmal Gurvwlarn, Mmah wail o witl | iurvututnessbmimer io?

Bl Bk g L Rt o, Mt b Ly |
win

Mol L Mt & L, Mol v 13w MUAL S Lphihw s (Cain e, e b |

2545 lines of proof tactic

Formal Model

Proot: v All goals closed

roumh i el AR T TR R L

5 M) Poull, Be,) aml MM o bone

L A L L FLERE LSl Ll SRR T L S
TEA 0L I n) "ommpmamar L ban "1 0 oy
et I T | . | I

7 dmprenserwd Nangeliane lulmn’ vi o) wminee

e Chempedate | 1M | sneillspe ® s
L. By N e, T on | CAAL 10 At bt vl Rty
dopr sttt oChatgeiafied Imtutms . 1 =« . . M 3
20 IR Z D L s it L LT IR0 L e

reCsenpeigti el lewe LI D 1 i pr e serel hangaligt e |

| n
™
022
I =N

oL 1
) eae
. AN e

Pttt jelsm’ ol b | e g baTl | ha? Pllalr) e
A,
tobdwrnitrainalrnrlDmiiinlm sinld i snaslinge! 'aT)

LS

S ——
wicilw s @s swns 20ee 2o Proving in KeYmaera X Theorem Prover
- [
l."
{
i = o o
.
Complete FRA and = v 5.0
Modellll A e
e r a : ‘;]
"] iveracen B P - Pl Ba)1 P
Gltel Vecwoan v

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predicti

Administration, 2009.

Generalizable

Approach: Impact

) : Start braking
—~§_:3 :
dC) ae R

Train stops
' I
Baselinelll | : . .
Y= v [ft/s] ! : End of movement authority
Verified I
50 - I
confroller — v [ft/s] [
0 2000 4000 6000 8000
train position (ft)
TOLLI
O o
et
OC T

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad
Administration, 2009.

Approach: Impact

— (ﬁ l) .
0 @ | | Start braking
e f :
5 (e —— .
Train stops
i I
Baselinelll | : : . .
o l— v [ft/s] : : : | End of movement authority
Verified |
50 - I
confroller — v [ft/s] [
0 2000 4000 6000 8000
train position (ft)
OLLL
et
O LN

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad
Administration, 2009.

Overview

-
9
i)

Q0]

o
4=

| -

Q
=
=

O

| -
T
—
)

| -

)
o

e Introduction

e Techniques

e Controller

e Evaluation

e SUMmMary

Background: Dynamics

Rate of change of train velocity is
acceleration

3 -9 DS,

L+
p' =v,v" =a;HaqHas(p)Har(v) Hac(p)iay, = myp

with a; € _—bmax,amax],aa — maa:(ab,abmax)

Rate of change of train
position is velocity

2o\

Background: Dynamics

Rate of change of tr.aln velocity is Air brakes ramp up
acceleration

x| =¥ [

L+
p' =v,v =a;HaqHas(p)Har(v) Hac(p)iay, = myp

with a; € _—bmax,amax],aa — max(ab,abmax)

Rate of change of train
position is velocity

2o\

10

Unknown functions: slope, curve

p :’U,’U, :al+aa+as(p)+a"r(v)+ac(p) Ay, = My

11

Unknown functions: slope, curve

Use worst case value ...

v’ =a;+a, +adp

Unknown function: replace with
worst case value m,

Unknown function: replace with worst
case value O

11

Unknown functions: slope, curve

... With improving estimates.

!
|

as (p) < Qs (pO) — min(msaas (pO) TU- hmax) T)

12

Other Proof Techniques

Circular Dependencies Taylor Polynomial

Problem: Circular dependence while estimating worst Problem: Davis resistance integrates poorly.

case values.
(\/4(az + ms)az — af)-

i a3 i
tan (t $0rtmelas=0y + tan~! (ay+3aavg)) — a1

2 \/4(a,+m_q)a2—a'f

) 2a2

Solution: Taylor polynomial approximation.

Solution: Bootstrap cycle with naive values, then

iterate.
Ghost Trains

Worst case slope

: (baseline) Problem: Intermediate reasoning steps transcendental.
Worst case velocity
Solution: Reason about as ODE (here represents dynamics

of a “ghost” train).

U

Proof

13

Overview

e Introduction
« Techniques ! |
e Controller A ® vl A N ol

e Evaluation

t .
-~
{ b & {4

e SUMMary

Control Structure

Control code runs in a loop with some latency T (in our case, to the
order of a second).

End of movement authority: the train

’ must stop by this point

p > stoppingDistance(p, v, ap));

Free Driving

Train Motion for at most time T

*

Theorem "WP2/slopecurve._offset_airbrakes_1"

Definitions
/* Acceleration coefficients. */
/* strict upper bound on maximal constant acceleration. */
1 Accelerations that are linear in velocity. */
Reala2; /* Accelerations that are quadratic n velocity. */
Real bO; /* Maximal constant braking force (positive). */
Real crvDer; /* Coefficient in derivative of horizontal curve. */

/* Situational track setup */

s inthe paper
RealT; /*Time control loop period / system reaction time. */

sloped track rather than along flat land). a_c n the paper. */

Real end; /* End of movement authority. e in the paper. */

measured along the sloped track rather than along flat land). a_c in the paper. */
< ”

h_{max) inthe
paper.*/

Real Amin; 1 Bound on fiction due to horizontal curve (resistance at min radius). m_
the paper.*/

Real Apb;

/% maximum penalty brake acceleration */

be applied. */
Rate; /* (Linear) rate of

Real n brakes when t
s applying them. */

/* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */

Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope] *T;

/* Maximum acceleration due to slope. */

+T)*vel, maxslope);

7w .
Real maxC 7,0
” vel. /.

| Real buildup) =

-maxsiopel),

124
maxSlope *buildupT (buildup)2);

7 The train willstop in at most this much distance f it accelerates for a time period and then bra
K

. Real vel) =) vel,
3),0)+ upperDist(vel, :

”

partof th

arinth
paper. */

Real resistance(Real vel) = a1*vel + a2*vel"2;
1 Total accel "

vel from position trainPos. */
Real vel,

cunvature(trainPos);

/* Upper bound on new velocity (increased for one time period). */
Real vel, Real I
+ (trainAccsmaxslopeAcc(slopeAce, baseUpperV(trainAc, vel))
+ maxCurvecc{curvature, baseUpperV{trainAce, vel)) Ty

/* Upper K
|, Real sl Te1/2%(
a0 + maxSlopeAcc(slopeAcc, baseUpperV(a0, vel))
+ maxCurveAcc(curvature, baseUpperV(a0, vel)))*T"2;

7+ Time till ipe pressure is at maximum given curren pressure. */
hangeRat

/* Utilty functions for absolute values: True if x| <
Bool absLessEq(Real x, Real y) <-> (x<=y & x<=y);

” i ch

curve and curve derivatives. */
<> \forallx \forall
& Vforall X \forall x absLessEqf{(curvaturel(x)', crvDer*x';

tCurx)

1+ Assumptions on constants. */
Bool conditionsOnConsts() <->
050

P on il
positive. */
/* Maximal constant braking force (positiv). */
/* Accelerations that are linear in velocity. */
1* Accelerations that are quadratic in velocity. */
/* Greatest allowed acceleration due to slope gradient. *
/*Time control loop period / system reaction time. */
/* Brakes more powerful than effect of slope. */
1+ Engine more powerful than effect of siope. */

&a1c0
&a20
& maxsiope>=0

&T>0
& b0-maxslope>0
&30 maxsiope>0

& maxvertCur>=0 /* Maximal rate of change of slope (vertical curvature).*
&Rmin<-0 /* Bound on friction due to horizontal curve (resistance at
radius). */
&crvper /* Coefficient n derivative of horizontal curve. */
B ”
" -
& maxslope) /* T

accelerations along actual track are within maxSlope. */

Maximally engaged air pressure brakes provide negative
acceleration. */

I+ air :
numbers. */
hangeRate<0; ”
pressure brakes increases. */
end.

ProgramVariables

Real trainPos; /* The position of the train. */

eal vel; /* The speed of the train.
Real trainAce; /* 3 braking. */
Real buld 2./
ESlope; /* pressureChangeRate if controller has cH Qotherwise. */
Real airBrake; /* Acceleration due to current pipe pressure. */
End.
Problem

end-trainPos>brakingDistancelvel, 0}

& conditionsOnConsts()

& imitedTrackChange()

vel>=0

& brakesiope=0
Bake-0

Theorem "WP2/slopecurve._offset_airbrakes_1"

Definitions
/* Acceleration coefficients. */
Reala0; /* Strict upper bound on maximal constant acceleration. */
Realal; /* Accelerations that are inear in velocity. */
Reala2; /* Accelerations that are quadratic n velocity. */

Real bO; /* Maximal constant braking force (positive). */
Real crvDer; /* Coefficient in derivative of horizontal curve. */
/* Situational track setup */
”r s inthe paper
RealT; /*Time control loop period / system reaction time. */
”

sloped track rather than along flat land). a_c n the paper. */
Real end; /* End of movement authority. e in the paper. */

measured along the sloped track rather than along flat land). a_c in the paper. */
< ”

h_{max) inthe
paper.*/

Real Amin; 1 Bound on fiction due to horizontal curve (resistance at min radius). m_
the paper.*/

Real Apb; 1 maximum penaly brake acceleration */

Control code runs in a loop with some latency T (in our case, tothe —— "7

/* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */
Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope] *T;

order of a second) | ——

End of movement authority: the train

3),0)+ upperDist(vel, :

must stop by this point

Real resistance(Real vel) = a1*vel + a2*vel"2;

1 Total accel the train at any p Jled aceel
vel from position trainPos. */
Real vel,

cunvature(trainPos);

/* Upper bound on new velocity (increased for one time period). */
. Realvel,Real
. . +(trainAcc+maxSlopeAcc(slopeAcc, baseUpperV(trainAcc, vel))
> - t O I n D I St a n C e U a » + maxCurveAcefcrvature, baseUpperV{tainace, vl T
2 » Uy Yp))y

/* Upper bound on distance covered for one time period under acceleration. */
| Real sl T41/2%(
20 + maxslopeAcclsiopeAcc, baseUpperv(ao, vel))
+ maxCurveAce(curvature, baseUpperV(ad, vel))} T"2;

7+ Time till ipe pressure is at maximum given curren pressure. */
hangeRat

F re e D r i Vi n g /* Utilty functions for absolute values: True if x| <

Bool absLessEq(Real x, Real y) <-> (x<=y & x<=y);

” Il ch are
curve and curve derivatives. */
<> \forallx \forall tCurx)
& Vforall X \forall x absLessEqf{(curvaturel(x)', crvDer*x';
1+ Assumptions on constants. */
Bool conditionsOnConsts() <->
050 b on il
positive. */
/* Maximal constant braking force (positiv). */
&a1c0

/* Accelerations that are linear in velocity. */
1* Accelerations that are quadratic in velocity. */

&a20
& maxsiope>=0 /* Greatest allowed acceleration due to slope gradient. *

&T>0 /*Time control loop period / system reaction time. */
& b0-maxslope>0 /* Brakes more powerful than effect of slope. */
&30 maxsiope>0 1+ Engine more powerful than effect of siope. */
& maxvertCur>=0 /* Maximal rate of change of slope (vertical curvature).*

/* Bound on friction due to horizontal curve (resistance at

/* Coefficient n derivative of horizontal curve. */
”

on */
& . maxslope) /*
accelerations along actual track are within maxSlope. */

i

Maximally engaged air pressure brakes provide negative
acceleration. */

I+ air :
numbers. */

hangeRate<0; ”
pressure brakes increases. */
end.

.) . Programvariables
Real trainPos; /* The position of the tain. */
rain iviotion Tor at most time e
Real trainAce; /* X braking. */
Real buld oo/
MESTope; / pressureChangeRate if ontrollr has e Qotherwise. */

Real airBrake; /* Acceleration due to current pipe pressure. */
end.
Problem

end-trainPos>brakingDistancelvel, 0}
& conditionsOnConsts()

& imitedTrackChange()

vel>=0

& brakesiope=0
2oic-0 ©,

Control Structure

Control code runs in a loop with some latency T (in our case, to the

order of a second).

{? (e-p > stoppingDistance(p, v, a;));

Free Driving

Only if there is a sufficient distance margin

Allow acceleration

Always allow braking

Train Motion for at most time T

*

Theorem "WP2/slopecurve_offset_airbrakes_1"

Definitions
/* Acceleration coefficients. */
/* strict upper bound on maximal constant acceleration. */
Realal; /* Accelerations that are inear in velocity. */
Reala2; /* Accelerations that are quadratic n velocity. */
Real bO; /* Maximal constant braking force (positive). */
Real crvDer; /* Coefficient in derivative of horizontal curve. */

/* Situational track setup */
T

st s inthe paper
RealT; /*Time control loop period / system reaction time. */

trainpos); /* trainpos 4 along the
sioped track rather than along flat land). a_c n the paper. */

Real end; /* End of movement authority. e in the paper. */

measured along the sloped track rather than along flat land). a_c in the paper. */
v ”

h_{max in the
paper. "/

Real Rmin; /* Bound on frction due to horizontal curve (resistance at min radius). m_¢
the paper. */

Real Apb;

/% maximum penalty brake acceleration */

be applied. */
Rate; /* (Linear) rate of dueto

Real ch
s applying them. */

/* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */

Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope] *T;

/* Maximum acceleration due to slope. */

*T)*vel, maxslope);

7+ Maximum *
Realvel) = 7,0
/7 The train h vel. %/
| Real buildup) = -maxslopel),
(el

124
‘maxSlope]*buildupT(buildup)2);

7 The train willstop in at most this much distance f it accelerates for a time period and then bra
K

. Real vel) =) vel,
3),0)+ upperDist(vel, :

”

partof th

arinth
paper. */

Real resistance(Real vel) = a1*vel + a2*vel"2;

1+ Total accel the train at any point for Jled accel "
vel from position trainPos. */

Real vel, E

cunvature(trainPos);

/* Upper bound on new velocity (increased for one time period). */
Real vel, Real I
+ (trainAccsmaxslopeAcc(slopeAce, baseUpperV(trainAc, vel))
+ maxCurvece(curvature, baseUpperV{(trainAce, vel))*T;

/* Upper bound on distance covered for one time period under acceleration. */
| Real sl T /2%
20 + maxslopeAcclsiopeAcc, baseUpperv(ao, vel))
+ maxCurveAce(curvature, baseUpperV(ad, vel))} T"2;

7+ Time till ipe pressure is at maximum given curren pressure. */
hangeRat

7+ Utility functions for absolute values: True if [x|<=y */
Bool absLessEq(Real x, Real y) <-> (x<=y & x<=y);

”

allchanges in
curve and curve derivatives. */

<> \forallx \forall tCurx)
& Vforall x \forall x absLessEq((curvature(x))’, crvDer*x');

1+ Assumptions on constants. */
Bool conditionsOnConsts() <->
050

P on il
positive. */
/* Maximal constant braking force (positiv). */
/* Accelerations that are linear in velocity. */
/* Accelerations that are quadratic n velocity. */
/* Greatest allowed acceleration due to slope gradient. *
/*Time control loop period / system reaction time. */
* Brakes more powerful than effect of slope. */
1+ Engine more powerful than effect of siope. */

&a1c0
&a20
& maxsiope>=0

&T>0
& b0-maxslope>0
&30 maxsiope>0

& maxvertCur>=0
&Rmin<-0
radius). */
&crvDer=0
B

/* Maximal rate of change of slope (vertical curvature).*
/* Bound on friction due to horizontal curve (resistance at

J* Coefficient n derivative of horizontal curve. */
”

track satisfy bound on *

& . maxSlope) /* Track is
accelerations along actual track are within maxSlope. */
i

Maximally engaged ai pressure brakes provide negative
acceleration. */

1+ air ’
numbers. */
hangeRate<0; ”
pressure brakes increases. */
End.

ProgramVariables

Real trainPos; /* The position of the train. */
Realvel; /* The speed of the train. */
Real trainAce; /*
Real b

braking. */

pe; | pressureChangeRate if controller has

. Qotherwise. */
/* Acceleration due to current pipe pressure. */

Lo
Real airBrake;
End.

Problem

end-trainPos>brakingDistancelvel, 0}

& conditionsOnConsts()

& imitedTrackChange()

vel>=0

& brakesiope=0
-0

Control Structure

Control code runs in a loop with some latency T (in our case, to the

order of a second).

1 ? (e-p > stoppingDistance(p, v, a;));

Free Driving

Control Envelope

Train Motion for at most time T

*

Theorem "WP2/slopecurve_offset_airbrakes_1"

Definitions
/* Acceleration coefficients. */
/* strict upper bound on maximal constant acceleration. */
Realal; /* Accelerations that are inear in velocity. */
;/* Accelerations that are quadratic in velocity. */
Real bO; /* Maximal constant braking force (positive). */
Real crvDer; /* Coefficient in derivative of horizontal curve. */

/* Situational track setup */
1" Great

st s inthe paper
RealT; /*Time control loop period / system reaction time. */

trainpos); /* trainpos 4 along the
sioped track rather than along flat land). a_c n the paper. */
Real end; /* End of movement authority. e in the paper. */

measured along the sloped track rather than along flat land). a_c in the paper. *,

Real maxvertCur; * Maximal rate of change of slope (vertical curvature). h_{max} in the

/* Bound on frction due to horizontal curve (resistance at min radius). m_¢

Real Ab; /% maximum penalty brake acceleration */
Real buildupThreshold; /* Time offset untilpressure brakes can be applied. */
Real pressureChangeRate; /* (Linear) rate of increase in acceleration due to ai brakes when t
s applying them. */

/* Upper bound on velocity for current velocity vel at acceleration a0 for one time period
independently from particular curve or slope. */

Real baseUpperV(Real a0, Real vel) = vel + (a0+maxSlope] *T;

/* Maximum acceleration due to slope. */

*T)*vel, maxslope);

7+ Maximum *
Realvel) = 7,0
/7 The train h vel. %/
| Real buildup) = -maxslopel),
(el

124
‘maxSlope]*buildupT(buildup)2);

7 The train willstop in at most this much distance f it accelerates for a time period and then bra
K

. Real vel) =
3),0)+ upperDist(vel,

) vel,
3 |

” partof th arinth
paper. */

Real resistance(Real vel) = a1*vel + a2*vel"2;

7+ Total the train at any point for Jled accel i
vel from position trainPos. */
Real vel, E
cunvature(trainPos);

/* Upper bound on new velocity (increased for one time period). */
Real vel, Real I

+ (trainAccsmaxslopeAcc(slopeAce, baseUpperV(trainAc, vel))
+ maxCurvece(curvature, baseUpperV{(trainAce, vel))*T;

/* Upper bound on distance covered for one time period under acceleration. */
\ Real s /2
20 + maxSlopeAcc(slopeAce, baseUpperV(ad, vel)
+ maxCurveAce{curvature, baseUppery(a0, vel))Tr2;

7+ Time till ipe pressure is at maximum given curren pressure. */
hangeRat

7+ Utility functions for absolute values: True if [x|<=y */
Bool absLessEq(Real x, Real y) <-> (x<=y & x<=y);

”

allchanges in are
curve and curve derivatives. */
<> \forallx \forall tCurx)
& Vforall X \forall x absLessEqf{(curvaturel(x)', crvDer*x';
1+ Assumptions on constants. */
Bool conditionsOnConsts() <->
050 oo on il
positive. */
/* Maximal constant braking force (positiv). */
&a1c0

/* Accelerations that are linear in velocity. */
/* Accelerations that are quadratic n velocity. */
/* Greatest allowed acceleration due to slope gradient. *
/*Time control loop period / system reaction time. */
* Brakes more powerful than effect of slope. */
1+ Engine more powerful than effect of siope. */

&a20
& maxsiope>=0

&T>0

& b0-maxslope>0
&30 maxsiope>0
&

& maxvertCur>=0
&Rmin<-0
radius). */
&crvDer=0
B

/* Maximal rate of change of slope (vertical curvature).*
/* Bound on friction due to horizontal curve (resistance at

J* Coefficient n derivative of horizontal curve. */
”

track satisfy bound on *

& . maxSlope) /* Track is
accelerations along actual track are within maxSlope. */
i

Maximally engaged ai pressure brakes provide negative
acceleration. */

1+ air ’
numbers. */
hangeRate<0; ”
pressure brakes increases. */
End.

ProgramVariables

Real trainPos; /* The position of the train. */
Realvel; /* The speed of the train. */
Real trainAce; /*
Real b

braking. */

pe;

17 pressureChangeRate i controller has

. Qotherwise. */
/* Acceleration due to current pipe pressure. */

Lo
Real airBrake;
End.

Problem

end-trainPos>brakingDistancelvel, 0}

& conditionsOnConsts()

& imitedTrackChange()

vel>=0

& brakesiope=0
-0

Envelope: Where the Complexity is

brakeDist,(v,ap) =

§
U — (bmax —ms +ap)ty(v,ap) + %mptb(v,ab)2
2(bmax — Mg — abmax)
ty(v,ap) = min((@pmax — ap) /My,

(bmax —Ms +ap) — | (bmax — Ms +ap)% — 2m,v|
mp

1 1
T)tb(’l),ab) T 5 (bmax — Mg+ ab)tb(vaab)2 T (ml))tb(vvab)S

+

stopDist,, (p,v,ab) — T+ (amax ";as (p) n acép)) T2

+brakeDist, ((v + (amax +@s(p) +@c(p)) T) y ,0)

21

Overview

Part 1: Train Verification
e Introduction | |
e Techniques rodd 7 - A \ ALl F s
« Controller ' St A . &M
e Evaluation O

e SUMmary

01—

Limiting Undershoot while Maintaining Safety

L L

0.0 = : 0.0 A
: I

=251 — a[ft/s"2] \ . =2.5 q | =— a [ft/s"2] ﬁf\
5 1

L

L} T

=T=—' v 2t v 2% #

0

-5 4 — elevation [ft]

S e s 0

/ (S) - /:/
: _5] — elevation [ft] :

0

2000 4000
train position (ft)

Start braking

Train stops

6000 8000 0 2000 4000 6000 8000
train position (ft)

End of movement authority

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad Administration, 2009.

23

Limiting Undershoot while Maintaining Safety

0 2000 4000 6000 8000 0 2000 4000 6000 8000

train position (ft) train position (ft)
: Start braking End of movement authority
I .
Train stops

[1] J. Brosseau and B. M. Ede, “Development of an adaptive predictive braking enforcement algorithm”, Federal Railroad Administration, 2009.

24

Summary

Proofs: https://doi.org/10.1184/R1/19542610

Verified controller for full FRA model dynamics. KeYmaera X proofs available online

Generalizable Technigques

Dealing with unknown functions
Circular dependencies

Taylor polynomials

Ghost dynamics

Verified Model Generalizability
e Abstraction of physical details
« Nondeterministic controller

Experiments

Controller limits undershoot while maintaining

safety

e —)

for

i

'\

André Platzer

itsch

Stefan M

i)
C
Q
p
>
O
)
-
4°)
=
)
q°)
-
@)
—_

i Kabra

Ad

Overview

Part 2: Synthesis

e Introduction

e Problem Statement

« Game Logic and Solution
e Refinement

e Evaluation

27

28

Proof fails
Design by proof
Can we automate it?

30+ proof attempts!

Cor 2 Proving in KeYmaera X
| . - Theorem Prover

Formal Model ;" [Prook: & Al goals closed
- |
FRA Model SR S—— Dot 1 < T
(a few : bt

equations)

Synthesis Pipeline

Model Template

Synthesis procedure
fills out the hard parts

Control Envelope

29

Related work

Other Work

This Work

Controller Synthesis Techniques

Controller Envelope Synthesis

7 Belta; C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical ° Bou ndS permISSIble ContrOI Iers
Systems. Springer Cham (2017) . . .
21. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber- * Perm Its Sepa ration Of Safety Cr|t|Ca| d nd Seconda ry
physical systems. Annual Reviews in Control 53, 30-50 (2022). doi: https://doi.
org/10.1016/j.arcontrol.2022.03.004 concerns
24. Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using ° Ca] be used e.g_ as trusted envelope for maCh | ne
modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. ! !
LNCS, vol. 2034, pp. 433-446. Springer (2001) learnin g
Numerical Safety Shields Symbolic
1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 : . H HP H
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 ¢ GOOd for hlgh d|men5|0n, Inflnlte Space/tlme prObIemS
. ModelPlex: Verified Runtim lidation of Verifi r-Physical m Model .
3 R\(/)(é%me Verified Runtime Validation of Verified Cyber-Physical Syste odel, o Stat|ca”y Computable
Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal e Faster

verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

e Potentially more scalable for complex problems

30

Related work

Other Work

This Work

Controller Synthesis Techniques

e Belta; C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical
Systems. Springer Cham (2017)

21. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber-
physical systems. Annual Reviews in Control 53, 30-50 (2022). doi: https://doi.
org/10.1016/j.arcontrol.2022.03.004

24. Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using
modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC.
LNCS, vol. 2034, pp. 433-446. Springer (2001)

Controller Envelope Synthesis
Bounds permissible controllers

Permits separation of safety critical and secondary
concerns
Can be used, e.g., as trusted envelope for machine
learning

Numerical Safety Shields

1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018

2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018

3. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Model,
RV 2014

Symbolic

Good for high dimension, infinite space/time problems
Statically computable

Manual Verified Design Case Studies

1. Platzer, A., Quesel, J.: European train control system: A case study in formal
verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

Automated

o Faster
e Potentially more scalable for complex problems

30

Related work

Other Work

This Work

Controller Synthesis Techniques

Controller Envelope Synthesis

7 Belta; C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical ° Bou ndS permISSIble ContrOI Iers
Systems. Springer Cham (2017) . . .
21. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber- * Perm Its Sepa ration Of Safety Cr|t|Ca| d nd Seconda ry
physical systems. Annual Reviews in Control 53, 30-50 (2022). doi: https://doi.
org/10.1016/j.arcontrol.2022.03.004 concerns
24. Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using ° Ca] be used e.g_ as trusted envelope for maCh | ne
modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. ! !
LNCS, vol. 2034, pp. 433-446. Springer (2001) learnin g
Numerical Safety Shields Symbolic
1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 ’ 3 3 B dER o B 3
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 ¢ GOOd for hlgh d|men5|0n, Inflnlte Space/tlme prOblemS
. ModelPlex: Verified Runtim lidation of Verifi r-Physical m Model .
3 R\(/)(é%pf Verified Runtime Validation of Verified Cyber-Physical Syste odel, o Stat|ca”y COmpUtab|e
Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal e Faster

verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

e Potentially more scalable for complex problems

30

Related work

Other Work

This Work

Controller Synthesis Techniques

Controller Envelope Synthesis

7 Belta; C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical ° Bou ndS permISSIble ContrOI Iers
Systems. Springer Cham (2017) . . .
21. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber- * Perm Its Sepa ration Of Safety Cr|t|Ca| d nd Seconda ry
physical systems. Annual Reviews in Control 53, 30-50 (2022). doi: https://doi.
org/10.1016/j.arcontrol.2022.03.004 concerns
24. Moor, T., Davoren, J.M.: Robust controller synthesis for hybrid systems using ° Ca] be used e.g_ as trusted envelope for maCh | ne
modal logic. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. ! !
LNCS, vol. 2034, pp. 433-446. Springer (2001) learnin g
Numerical Safety Shields Symbolic
1. Safe Reinforcement Learning via Shielding, Alshiekh et al, AAAI 2018 : . H HP H
2. Safe Reinforcement Learning via Formal Methods, Fulton et al, AAAI 2018 ¢ GOOd for hlgh d|men5|0n, Inflnlte Space/tlme prOblemS
. ModelPlex: Verified Runtim lidation of Verifi r-Physical m Model .
3 R\(/)(é%me Verified Runtime Validation of Verified Cyber-Physical Syste odel, o Stat|ca”y COmpUtab|e
Manual Verified Design Case Studies Automated
1. Platzer, A., Quesel, J.: European train control system: A case study in formal e Faster

verification. In: Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil,
December 9-12, 2009.

e Potentially more scalable for complex problems

30

Overview

Part 2: Synthesis

e Introduction

e Problem Statement

« Game Logic and Solution
« Refinement

e Evaluation

31

Problem

Fill in holes (| |) in a template with a propositional formula.

prob = assum A L — [((U; (75 acty)) ; plant)*]safe.

32

Problem

Fill in holes (| |) in a template with a propositional formula.

prob =

assum A i — [((U; (75 acty)) ; pIant)*] safe.

32

Problem

Fill in holes (| |) in a template with a propositional formula.

prob = lassum A i — [((U; (?u;; act;)) ; plant)] safe.

[Control Loop

Problem

Fill in holes (| |) in a template with a propositional formula.

prob =

assum A

= |

((Ui (?uz X actz-)) X plant){]]

safe.

i

32

Problem

Fill in holes (| |) in a template with a propositional formula.

prob = assum A L — [((U; (75 acty)) pIant)*]safe.

33

Problem

Fill in holes (| |) in a template with a propositional formula.

prob =

assum A i — [((U; (7045 act;)) ; plant) 7] safe.

33

Problem

Fill in holes (| |) in a template with a propositional formula.

prob =

assum A i — [((U; (7045 act;)) ; plant) 7] safe.

33

Problem

Fill in holes (| |) in a template with a propositional formula.

prob =

assum

. slact; ’D) : plant) "] safe.

33

Problem

Fill in holes (| |) in a template with a propositional formula.

prob =

assum

— = [((Us

(

Ty

..

act;)) ; plant)”] safe.

33

Problem

Fill in holes (| |) in a template with a propositional formula.

prob =

assum A i — [((Ug(

Ty

)

lact;) ;

plant)] safe.

33

Problem

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

34

Problem

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

assum | 1 A>S0AB>0AT>0Av>0 Assumptions on the system

35

Problem

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

assum|1 A>0AB>0AT>0Av>0

ctrlable | 2 /\[| = [{ Conditions from necessary to safety

36

Problem

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts

can be automatically synthesized by our proposed tool.

assum

ctrlable

1 A>SO0AB>0AT>0Av>0

2 Al

|- [{

3

(

];a:zA)

When is it ok to accelerate?

37

Problem

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts

can be automatically synthesized by our proposed tool.

assum

ctrlable

el
SRy

1
2
3

4

A>0AB>0AT>0Av>0

Al

|- [

((@

U (?

r

];a:zA)

_];a:=—B) JE

When is it ok to brake?

38

Problem

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

assum|1 A>SO0AB>0AT>0Av>0
ctrlable | 2 A[]—-)[{
3 ?’ r @ = A
ctrl -] ¢)
1 u @ |ia:=-B));
plant| 5 (t:=0;{p =v, ' =a, ' =1&Et<TAv>0})

System differential equation

Problem

Fill in holes (| |) in a template with a propositional formula.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

assum|{1 A>SO0AB>0AT>0Av>0
ctrlable | 2 /\[]—+[{
ctrl 3 ((7];a:z A)
4 U (?_J;a:=—B));
plant| 5 (t:=0;{p'=v,v" =a,t' =1&t<TAv>0})
safe| 6 }lle—p>0) Safety contract

40

Problem: Example Solution

Fill in holes (| |) in a template.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

assum|1 A>SO0AB>0AT>0Av>0
ctrlable| 2 Ale—p> v2/2B - [{ There’s enough space to stop if we start braking now
3 ((2 |; a:=A)
ctrl
4 U (? I;a:=—B));
plant| 5 (t:=0;{p=v,v' =a,t' =1&Et<TAv>0)})
safe| 6 }l(e—p>0)

41

Problem: Example Solution

Fill in holes (| |) in a template.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

assum|1 A>SO0AB>0AT>0Av>0
ctrlable | 2 Ac—p>v2/2§]ﬂ[{

3 ((?le—=p>vT+ AT?/2+ (v+ AT)*/2B|; a:= A)

- |

There’s enough space to stop if we accelerate for one time period and then keep braking

safei 6 }lle—p> 0)

42

Problem: Example Solution

Fill in holes (| |) in a template.

Example:

Model 1 The train ETCS model (slightly modified from [29]). Framed parts
can be automatically synthesized by our proposed tool.

assum|1 A>SO0AB>0AT>0Av>0
ctrlable| 2 Ale—p>v*/2B|— [{
M E ((?le=p>vT+ AT?/2+ (v+ AT)*/2B|; a:= A)
1 U (?|{truel;a:=-B)); You never make life worse by braking
plant | 5 (t:=0;{p=v,v' =a,t' =1&Et<TAv>0)})
safe| 6 }l(e—p>0)

43

Solution

Fill in holes (| |) in a template with a propositional formula.

prob = assum A L — [((U; (755 acty)) ; pIant)*]safe.

44

Solution

Fill in holes (| I) in a template with a propositional formula.

prob = assum A L — [((U; (7€ 5 act;)) ; pIant)*]safe.

1. Safety (valid dL formula)
2. Always some control option ((assum A I) = V; G;)

44

Aditi Nandkishor Kabra
I

Aditi Nandkishor Kabra
G

Quality of Solution

When can the train Accelerate?
(v + AT)?

2B
Safe Useful

When can the train Accelerate?

When False (never) Whene — p >

Not Useful

* Good solution: more permissive
*S'" > Swhenkassum = (I = I') and E (assum A I) =A; (G; = G;)
* Unique optimum

45

Overview

Part 2: Synthesis

e Introduction

e Problem Statement

« Game Logic and Solution
« Refinement

e Evaluation

46

Background: Game Logic

dL féas nondeterminism
)

47

Background: Game Logic

dL fzas nondeterminism
)

Players resolve nondeterminism

. @

48

Background: Game Logic

dL fzas nondeterminism
)

Players resolve nondeterminism

. @

Operators

(a:==AUa:=B)

(a:==AnNa:= B)

o

anp, o, 2¢", {x' = fx)0)"

Background: Game Logic

= Angelic Game

(a=Ana=B) a=A
Angel wins if in the end, a=A

& Demonic Game
[@a:=ANna:=B)la=A
Demon wins if in the end, a=A

Duality

> —

~(a@)=P < [a]P

o

50

Background: Game Logic

Axioms

dGl without loops: translation
in first order logic.

[(Vi=1nv:=-1){x"=v}]x20

[(v=1) XN =v)x0v
(v =V)xs0

= (X' =1 }]x2£0V[{Xx"'=-1}]x0
8

=V{=0x+t20v vi=0x-t£0
$
=x>0vx<0

51

Optimal Solution

prob =

assum A

— [((Uz (7145 act;)) ; plant) | safe.

The set of all states from which a perfect controller can keep the system safe forever

1o =

(N; act;) ; plant)*] safe

By construction, loop invariant

52

Aditi Nandkishor Kabra

Optimal Solution

prob =

assum A

— [((Uz (7151 act;)) ; plant) | safe.

The set of all states from which a perfect controller can keep the system safe forever

1o =

(Nglact;) ; plant)*] safe

By construction, loop invariant

Allow any control action that is guaranteed to keep the system within 1°Pt

G = [act;; plant] I°Pt,

52

Computing Propositional Arithmetic Solutions

e Easily checked at runtime

53

Computing Propositional Arithmetic Solutions

e Easily checked at runtime

e Use the semantics of dGL (which are in terms of FOL™)

53

Computing Propositional Arithmetic Solutions

e Easily checked at runtime
e Use the semantics of dGL (which are in terms of FOL™)

o ¥*But two dGL constructions need more than FO L.

53

Computing Propositional Arithmetic Solutions

e Easily checked at runtime
e Use the semantics of dGL (which are in terms of FOL™)

o ¥*But two dGL constructions need more than FO L.

. Loops: Defined in terms of fixed point ™= Approximate with “Refinement”

- Differential equations: Presupposes an ODE solution === Approximate

53

Overview

Part 2: Synthesis

e Introduction

e Problem Statement

« Game Logic and Solution
« Refinement

e Evaluation

54

Refinement

I opt

[((N; act;) ; plant)

| safe

Want to remove
this

55

Refinement

I°PY = [((N; act;) ; plant)

Action Choice

Refinement

4 If Action)

Permanence
then

1-shot
Unrolling

Want to remove
this
5k
safe

Bounded

Fallback
Unrolling

Iteratively

improved
by

55

Action Choice Refinement

The game obtained by restricting the controller
to one action

a:=—B;t:=0;
{ =1t§TAUZO}

Is harder than the game where the controller
chooses between multiple actions

(a:=—Bna:=A);t:=0;

/ e_ >O
{p'=v,v'=a,t=1t§T/\UZO} P

56

Action Choice Refinement

The game obtained by restricting the controller
to one action

a:=—B;t:=0;
{ =1tSTAUZO}

One Shot Unrolling

Is harder than the game where the controller
chooses between multiple actions

(a:=—Bna:=A);t:=0;

/ e_ >O
{p’zv,v’za,tzltST/\UZO} P

If you repeat a time bounded ODE

*

e—p>0

That’s like executing the ODE for
arbitrarily long

[a:z—B; {p’zv,v’za,t/zl 020} e—p>0

56

Action Choice Refinement

The game obtained by restricting the controller
to one action

= — B;t:=0;

a
{ =1tST/\UZO} P

Is harder than the game where the controller
chooses between multiple actions

(a:=—Bna:=A);t:=0;
{plzv,vlza,t/zl tST/\UZO}

e—p>0

If you repeat a time bounded ODE

*

e—p>0

That’s like executing the ODE for
arbitrarily long

[a:z—B; {p’zv,v’za,t/zl 020}

e—p>0°

56

One Shot Refinement

’a:=—B; {p’=v,v’=a,tl=1 020} e—p>0

Symbolic Execution

Bt?
Vi(v— Bt >0 —>p+vt—7>e)

. Quantifier Elimination

2

v

I = _
p+2B>e

57

One Shot Refinement

’a:=—B; {p’=v,v’=a,tl=1 020} e—p>0

Symbolic Execution

Bt?
Vi(tv— Bt >0 —>p+Ut—T>€)

. Quantifier Elimination

2

v

I = _
p+2B>e

» Action permanence: (act; ; plant; act;) = (act; ; plant)

» In practice: when a control action corresponds to a “mode” of behavior.

57

One-shot Unrolling: Example

e 1-shot unrolling lets the controller choose one action and run it
forever.

2R

1 iteration 1-shot unroll 2-shot unroll

One-shot Unrolling: Example

e 1-shot unrolling lets the controller choose one action and run it
forever.

2R

2 iterations 1-shot unroll 2-shot unroll

One-shot Unrolling: Example

e 1-shot unrolling lets the controller choose one action and run it
forever.

2R 2R | (0,0) z: Q

2 iterations 1-shot unroll 2-shot unroll

One-shot Unrolling: Example

e 1-shot unrolling lets the controller choose one action and run it
forever.

2R 21{| (0,0) T "Q ‘g

2 iterations 1-shot unroll 2-shot unroll

One-shot Unrolling: Example

e 1-shot unrolling lets the controller choose one action and run it
forever.
« Bounded unrolling allows a “switch” in action choice

2R

2 iterations

21z| (0,0) . +~& 44 -

1-shot unroll 2-shot unroll 62

Bounded Unrolling

* n switches to reach the region I, in which safety is guaranteed
indefinitely

* Controller has chance to switch within |0, 0 + T'| window because
plant can never execute for time greater than T

64

Bounded Unrolling

* n switches to reach the region I, in which safety is guaranteed
indefinitely

* Controller has chance to switch within |0, 0 + T'| window because
plant can never execute for time greater than T

forever = (N;ep act;) ; plant_

step = (f:=+; 70 > 0)*; (Niep act;) ; plantg o ?safe?; 7t > 6

Controller chooses While By time ¢/ the controller
some time @ in the For a controller choice staying reaches established safe
future chosen up to time 0 safe region

["th = I™ V [step] I™ I° = [forever]safe
65

Dual Game

Duality Optimal?

> —

~(a)=P < [a]P

p) [p)

(@)= (@)=

or

D (A %

a a
()P Check Environment Game «”"“ﬂ
G ?? (@)~ P)
g |

Algorithm: CESAR

« Recursively compute bounded unrolled invariants I”.

67

Algorithm: CESAR

« Recursively compute bounded unrolled invariants I”.
e Stop if either

« Reached fixed point (I"= I"+1)

o Optimality check using dual succeeds (in all regions not in the
invariant, can environment “win”?)

« Unrolling budget reached

67

Algorithm: CESAR

« Recursively compute bounded unrolled invariants I”.
e Stop if either

« Reached fixed point (I"= I"+1)

o Optimality check using dual succeeds (in all regions not in the
invariant, can environment “win”?)

« Unrolling budget reached

« With resulting I, compute each hole fill using

G, = |act;; plant] I

(/

67

Overview

Part 2: Synthesis

e Introduction

e Problem Statement

« Game Logic and Solution
e Refinement

e Evaluation

68

Evaluation

Benchmark Suite with different control challenges

Table 2: Summary of the benchmark suite and most important control challenges.

Benchmark Control Feature Introduced

Gears Many (namely 8) actions to choose from.

ETCS Nondeterministic, bounded acceleration (from case study [29]).
Table Tennis Introduce two-dimensional motion.

Reservoir Dynamics mixes variables that controller can and can’t influence.
Reaction Conjunctive safety constraints.

Merge Disjunctive safety constraints.

Wall Requires state-dependent fallback actions.

Parachute Action switching restricted: cannot close parachute once open.
Corridor Requires unrolling fallback for optimal synthesis (Fig. 1).

Sputtering Car Unsolvable continuous dynamics.

69

Evaluation

Benchmark Synthesis Time (s) Memory (MB) Checking Time (s)

Gears

ETCS

Table Tennis
Reservoir
Reaction
Merge

Wall

Parachute
Corridor”
Sputtering Car

5.97
4.32
2.79
4.95
9.93
3.30
3.74
3.37
7.14
2.12

41.30
40.96
40.13
39.99
41.10
40.22
40.33
40.16
41.71
39.63

2.6
7.6
1.4
2.1
3.1
4.7
11.7
5.0
1.9
1.1

70

Future Work

« Handle hard dynamics

Ghost
Dynamics

Unknown Circular Taylor

Functions Dependencies Polynomials

« Generalize to differential game logic

Ul EEl Adversarial

Agents

Free
Assignments

Triggered Triggered
Control Control

Thank You!

Aditi Kabra
https://aditink.github.io
akabra@cs.cmu.edu

72

