
Thesis Proposal
Verified Control Envelope Synthesis for

Hybrid Systems
Aditi Kabra

19th September 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
André Platzer, Co-chair
Stefan Mitsch, Co-chair
Armando Solar-Lezama

Eunsuk Kang

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Aditi Kabra

Abstract

Many cyber-physical systems, such as trains, planes, and self-driving cars, are safety-
critical but difficult to reason about. Formal verification can provide strong safety guarantees,
but most industrial controllers are too complex to formally verify. Safe control envelopes
characterize families of safe controllers and are used to monitor [32] untrusted controllers
on verifiable abstractions of control systems that isolate the parts relevant to safety without
the full complexity of a specific control implementation, at runtime. They can put complex
controllers, even when machine learning based [18], within the reach of formal guarantees.
But correct control envelopes are still hard to design because the control engineer needs to
identify correct control conditions that tell the controller what to do right now to stay safe
at all times in the future by anticipating the behavior of the system over complex dynamics
and an uncountably infinite state space (the subject of the deep field of control theory). This
thesis proposes to provide synthesis techniques to automatically synthesize provably correct
control conditions, greatly reducing the manual effort required for control envelope design.
It aims to scale synthesis to complex real-world problems with realistic physical dynamics.

The input of the synthesis tool is a sketch of the control envelope in a hybrid system
showing what kind of control behavior is physically possible. The tool fills in the blanks of
the sketch by synthesizing control conditions using hybrid system game theory. The output
is a provably correct symbolic control envelope. Existing controller synthesis techniques do
not solve control envelope synthesis because control envelopes have the higher-order con-
straint of permitting as many valid control solutions as possible. Completed work provides
the algorithm CESAR (Control Envelope Synthesis via Angelic Refinement) [25], which
solves a class of problems where a set of systematic game refinements allows automatic
control envelope synthesis. Proposed work generalizes synthesis to a broad class of systems
(characterized by admitting a natural representation in differential game logic) and develops
a system that allows users to provide the human intuition based insights that, together with
automated reasoning, can complete the control envelope synthesis process in more complex
cases.

We aim to scale synthesis to control envelopes complex enough to be used in real sys-
tems. As a first step, completed work [24] manually develops a case study for the synthesis
system to target: the first verified train control envelope [23] that accounts for all the forces
in the realistic Federal Railroad Administration Train Kinematics Model [7]. The case study
identifies generalizable techniques to deal with the challenges this system poses that appear
in other real systems: cyclically interdependent system variables, underspecified dynamical
influences whose exact values are unknown at proof time, and differential equation dynamics
that lie outside the decidable fragment of real arithmetic.

2

Contents
1 Introduction 4

2 Completed Work 5
2.1 CESAR by Example . 5

2.1.1 Background . 5
2.1.2 Control Envelopes . 7
2.1.3 Overview of CESAR . 8

2.2 Case Study: Train Control . 10
2.2.1 Generalizable Challenges . 11

3 Proposed Work 14
3.1 Generalizing Control Envelope Synthesis . 14

3.1.1 dGL Solution . 16
3.1.2 Solving . 17
3.1.3 Increased Expressivity . 19
3.1.4 Heuristics . 20

3.2 LLM Assisted Synthesis . 21
3.2.1 Arithmetic Queries . 22
3.2.2 Phase Based Control Guidance Input 22

4 Related Work 23

5 Timeline 24

A Additional Definitions 29

3

1 Introduction
In cyber-physical systems (CPS) like trains, planes, and self-driving cars, discrete software inter-
acts with continuous physics. Many of these systems are safety-critical, since software error can
have tragic or expensive consequences. Formal verification mathematically proves that a system
adheres to its safety requirements, and can provide high safety assurance. However, proving the
correctness of the code is difficult, with proof complexity increasing drastically with code and
system complexity. Most industrial systems are too complex to directly formally verify. Control
envelopes provide a solution. They model simpler abstractions of the control system that focus
only on safety-critical aspects. These abstractions can be verified and then checked against the
full system at runtime [32].

A safe control envelope is a nondeterministic program whose every execution is safe. It is
used to monitor the actual controller at runtime: if observed controller or environment behav-
ior is not within the envelope, a safe fallback is enforced [31]. Safe control envelopes allow
complex controllers, even those based on machine learning, to be used in safety-critical systems
while still providing formal safety guarantees [17]. However, safe control envelopes are still
very difficult to design and verify. The process requires the engineer to anticipate the influence
of complicated system dynamics and the interactions of possible future controller decisions to
design control conditions that say how the controller should act now to ensure safety at all times
in the future, regardless of how environment and controller nondeterminisms play out. To de-
sign these conditions, engineers need to exercise creativity and domain expertise. Proving that
the designed conditions are correct then requires careful mathematical reasoning over many engi-
neering hours, likely resulting in the discovery that the control envelope cannot be proved correct
because of a subtle bug, so that the control conditions need to be fixed and re-proved again.

This thesis aims to make it easier to design control envelopes by automating the most difficult
part of the process: constructing the provably correct control conditions. We develop techniques
to synthesize control conditions given a sketch of the control envelope defining system dynam-
ics, what control decisions are physically possible, and the safety contract. Control conditions
should be as permissive as possible, so that the resulting control envelope only interferes with
control actions when they are genuinely unsafe. Naı̈vely applying existing controller synthesis
techniques is insufficient for solving the control envelope synthesis problem, which poses the
higher-order challenge of capturing as many valid control solutions as possible. We solve this
challenge by implicitly characterizing an optimal solution to the control envelope synthesis prob-
lem using hybrid games, and then solve these games to obtain an explicit solution via symbolic
execution aided by game refinement (transforming the game to be easier to execute symbolically
while still preserving some properties).

Completed work provides the CESAR (Control Envelope Synthesis via Angelic Refinements)
algorithm [25], which solves the class of problems with time-triggered control (where the con-
troller repeatedly chooses an action with some maximum time latency) and action permanence
(a hybrid analog to idempotence). For these problems, we identify a systematic game refinement
approach to aid symbolic execution when it fails at loops (which can execute an unbounded num-
ber of times, failing symbolic execution). Proposed work generalizes synthesis to the class of
problems where an implicit game characterization of the optimal solutions exists. In this general
case, explicit solutions are again extracted with symbolic execution, but now aided by heuris-

4

tics that guess solutions when symbolic execution fails. The guesses are checked to recover
correctness.

An important objective of our work is to be able to synthesize control envelopes complex
enough to apply to real-world systems. Designing symbolic control envelopes with high fi-
delity to real-world dynamics even manually is so challenging that case studies from the lit-
erature still usually make simplifications while modeling the environment and controller logi-
cally [30, 33, 34, 35, 42] that leave them a few steps away from being immediately applicable
as run-time monitors. So we first create as a target for the synthesis tool a verified control en-
velope that solves the practically important problem of train control [24] accounting for all the
forces in the realistic Federal Railroad Administration Train Kinematics Model [7]. This case
study poses challenges common in other safety-critical embedded systems – complex dynamics
with transcendental arithmetic, competing forces with subtle interaction, and effects whose ex-
act magnitude is unknown at proof time – and makes us seek generalizable solutions. Proposed
work has the goal of scaling synthesis to the point where it can automatically generate the control
conditions and proof of this case study.

In summary, this thesis proposes to design techniques to perform verified control envelope
synthesis for hybrid systems. The main idea is to characterize optimal synthesis solutions using
hybrid system game theory, and then extract explicit solutions using symbolic execution aided by
refinements and heuristics. We plan to use LLMs to scale to greater complexity in combination
with verification to maintain soundness and aim to synthesize control envelopes that are complex
enough to be useful in real-world systems.

2 Completed Work
Completed work develops CESAR, an algorithm to synthesize symbolic control envelopes for
a subset of time-triggered controllers with the “action permanence” property, which intuitively
means that there is some control action such that repeatedly choosing it results in a period of
smooth dynamical behavior (e.g., a train continuously choosing to brake). While a full explana-
tion is elsewhere [25], here we provide an intuitive overview of CESAR by example.

Completed work also develops as a target for synthesis a verified train control envelope [24]
that accounts for all the forces in the realistic Federal Railroad Administration Train Kinematics
Model [7], and deals in generalizable ways with the challenges that arise with realistic modeling
of forces. We provide an overview of this work as well. Much of the text in this section is based
on the corresponding completed papers [24, 25].

2.1 CESAR by Example
2.1.1 Background

This section briefly introduces dL and dGL. We use hybrid games written in differential game
logic (dGL, [39]) to represent solutions to the synthesis problem. Hybrid games are two-player
zero-sum games with no draws that are played on a hybrid system with differential equations.
Players take turns, and in their turn can choose to act arbitrarily within the game rules. At the end

5

of the game, one player wins and the other loses. The players are classically called Angel and
Demon. Hybrid systems, in contrast, have no agents, only a nondeterministic controller running
in a nondeterministic environment. The synthesis problem consists of filling in holes in a hybrid
system. Thus, expressing solutions for hybrid system synthesis with hybrid games is one of the
insights of this work.

An example of a game is (v := 1 ∩ v :=−1) ; {x′ = v}. In this game, first Demon chooses
between setting velocity v to 1, or to -1. Then, Angel evolves position x as x′ = v for a duration
of her choice. Differential game logic uses modalities to set win conditions for the players.
For example, in the formula [(v := 1 ∩ v :=−1) ; {x′ = v}]x ̸= 0, Demon wins the game when
x ̸= 0 at the end of the game and Angel wins otherwise. The overall formula represents the set
of states from which Demon can win the game, which is x ̸= 0 because when x < 0, Demon has
the winning strategy to pick v := −1, so no matter how long Angel evolves x′ = v, x remains
negative. Likewise, when x > 0, Demon can pick v := 1. However, when x = 0, Angel has a
winning strategy: to evolve x′ = v for zero time, so that x remains zero regardless of Demon’s
choice.

We summarize dGL’s program notation (Table 1). See [39] for a full explanation. Assignment
x := θ instantly changes the value of variable x to the value of θ. Challenge ?ψ continues the
game if ψ is satisfied in the current state, otherwise Angel loses immediately. In continuous
evolution x′ = θ & ψ Angel follows the differential equation x′ = θ for some duration of
her choice, but loses immediately on violating ψ at any time. Sequential game α; β first plays
α and when it terminates without a player having lost, continues with β. Choice α ∪ β lets
Angel choose whether to play α or β. For repetition α∗, Angel repeats α some number of times,
choosing to continue or terminate after each round. The dual game αd switches the roles of
players. For example, in the game ?ψd, Demon passes the challenge if the current state satisfies
ψ, and otherwise loses immediately.

In games restricted to the structures listed above but without αd, all choices are resolved by
Angel alone with no adversary, and hybrid games coincide with hybrid systems in differential

Table 1: Hybrid game operators for two-player hybrid systems

Game Effect

x := θ assign value of term θ to variable x
?ψ Angel passes challenge if formula ψ holds in current state, else loses imme-

diately(
x′1 = θ1, . . . , Angel evolves xi along differential equation system x′i = θi
x′n = θn & ψ

)
for choice of duration ≥ 0, loses immediately when violating ψ

α; β sequential game, first play hybrid game α, then hybrid game β
α ∪ β Angel chooses to follow either hybrid game α or β
α∗ Angel repeats hybrid game α, choosing to stop or go after each α
αd dual game switches player roles between Angel and Demon

α ∩ β demonic choice (αd ∪ βd)d gives choice between α and β to Demon
α× demonic repetition ((αd)

∗
)d gives control of repetition to Demon

6

dynamic logic (dL) [39]. We will use this restriction to specify the synthesis question, the sketch
that specifies the shape and safety properties of control envelopes. But to characterize the solution
that fills in the blanks of the control envelope sketch, we use games where both Angel and Demon
play. The notation we use includes demonic choice α ∩ β, which lets Demon choose whether to
run α or β. Demonic repetition α× lets Demon choose whether to repeat α choosing whether to
stop or go at the end of every run.

In order to express properties about hybrid games, differential game logic formulas refer
to the existence of winning strategies for objectives of the games (e.g., a controller has a win-
ning strategy to achieve collision avoidance despite an adversarial environment). The set of
dGL formulas is generated by the following grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2
are arithmetic expressions in +,−, ·, / over the reals, x is a variable, α is a hybrid game):

ϕ := θ1 ∼ θ2 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀xϕ | ∃xϕ | [α]ϕ | ⟨α⟩ϕ

Comparisons of arithmetic expressions, Boolean connectives, and quantifiers over the reals are
as usual. The modal formula ⟨α⟩ϕ expresses that player Angel has a winning strategy to reach
a state satisfying ϕ in hybrid game α. Modal formula [α]ϕ expresses the same for Demon. The
fragment without modalities is first-order real arithmetic. Its fragment without quantifiers is
called propositional arithmetic PR. Details on the semantics of dGL can be found in [39].

States are functions assigning a real number to each variable. For instance, ϕ→ [α]ψ is valid
iff, from all initial states satisfying ϕ, Demon has a winning strategy in game α to achieve ψ.

2.1.2 Control Envelopes

We make the idea of a control safety envelope concrete by example. In order to separate safety-
critical aspects from other system goals during control design, control envelopes abstractly de-
scribe the safe choices of a controller, deliberately underspecifying when and how to exactly
execute certain actions. Control envelopes focus on describing in which regions it is safe to take
actions. For example, Model 1 designs a train control envelope [42] that must stop by the train
by the end of movement authority e located somewhere ahead, as assigned by the train network
scheduler. Past e, there may be obstacles or other trains. The train’s control choices are to ac-
celerate or brake as it moves along the track. The goal of CESAR is to synthesize the framed
formulas in the model, that are initially blank.

Line 8 describes the safety property that is to be enforced at all times: the train driving at
position p with velocity v must not go past position e. Line 1 lists modeling assumptions: the
train is capable of both acceleration (A>0) and deceleration (B>0), the controller latency is
positive (T>0) and the train cannot move backwards as a product of braking (this last fact is also
reflected by having v ≥ 0 as a domain constraint for the plant on Line 6). These assumptions are
fundamentally about the physics of the problem being considered. In contrast, Line 3 features
a controllability assumption that can be derived from careful analysis. Here, this synthesized
assumption says that the train cannot start so close to e that it won’t stop in time even if it starts
braking immediately. Line 4 and Line 5 describe a train controller with two actions: accelerating
(a := A) and braking (a := −B). Each action is guarded by a synthesized formula, called an
action guard that indicates when it is safe to use. Angel has control over which action runs,
and adversarially plays with the objective of violating safety conditions. But Angel’s options

7

Model 1 The train ETCS model (slightly modified from [42]). Framed formulas are initially
blank and are automatically synthesized by our tool as indicated.

assum
∣∣ 1 A > 0 ∧B > 0 ∧ T > 0 ∧ v ≥ 0∧

ctrlable
∣∣ 2 e− p > v2/2B → [{

ctrl

∣∣∣∣∣ 3 ((? e− p > vT + AT 2/2 + (v + AT)2/2B ; a :=A)

4 ∪ (? true ; a :=−B)) ;

plant
∣∣ 5 (t := 0 ; {p′ = v, v′ = a, t′ = 1 & t ≤ T ∧ v ≥ 0})

safe
∣∣ 6 }∗](e− p > 0)

are limited to only safe ones because of the synthesized action guards, ensuring that Demon still
wins and the overall formula is valid. In this case, braking is always safe whereas acceleration
can only be allowed when the distance to end position e is sufficiently large. Finally, the plant on
Line 6 uses differential equations to describe the train’s kinematics. A timer variable t is used to
ensure that no two consecutive runs of the controller are separated by more than time T . Thus,
this controller is time-triggered.

2.1.3 Overview of CESAR

For Model 1, CESAR first identifies the optimal solution for the blank of Line 3. Intuitively, this
blank should identify a controllable invariant, which denotes a set of states where a controller
with choice between acceleration and braking has some strategy (to be enforced by the conditions
of Line 4 and Line 5) that guarantees safe control forever. Such states can be characterized by the
following dGL formula where Demon, as a proxy for the controller, decides whether to accelerate
or brake: [((a :=A ∩ a :=−B) ; plant)∗]safe where plant and safe are from Model 1. When
this formula is true, Demon, who decides when to brake to maintain the safety contract, has a
winning strategy that the controller can mimic. When it is false, Demon, a perfect player striving
to maintain safety, has no winning strategy, so a controller has no guaranteed way to stay safe
either. We define a solution in dGL for any given CESAR input and prove that it is optimal after
first defining an ordering on solutions where more permissive solutions, allowing more actions
more often are better.

This dGL formula provides an implicit characterization of the optimal controllable invariant
from which we derive an explicit formula in PR to fill the blank with using symbolic execution.
Symbolic execution solves a game following the axioms of dGL to produce an equivalent PR
formula. However, our dGL formula contains a loop, for which symbolic execution will not
terminate in finite time. To reason about the loop, we refine the game, modifying it so that it is
easier to symbolically execute, but still at least as hard for Demon to win so that the controllable
invariant that it generates remains sound. In this example, the required game transformation
first restricts Demon’s options to braking. Then, it eliminates the loop using the observation
that the repeated hybrid iterations (a := −B;plant)∗ behave the same as just following the
continuous dynamics of braking for unbounded time. It replaces the original game with a :=
−B ; t := 0 ; {p′ = v, v′ = a & ∧ v ≥ 0}, which is loop-free and easily symbolically executed.

8

Symbolically executing this game to reach safety condition safe yields controllable invariant
e− p > v2

2B
to fill the blank of Line 3.

Intuitively, this refinement captures situations where the controller stays safe forever by pick-
ing a single control action (braking). It generates the optimal solution for this example because
braking forever is the dominant strategy: given any state, if braking forever does not keep the
train safe, then certainly no other strategy will. However, there are other problems where the
dominant control strategy requires the controller to strategically switch between actions, and
this refinement misses some controllable invariant states. So we introduce a new refinement:
bounded game unrolling via a recurrence. A solution generated by unrolling n times captures
states where the controller can stay safe by switching control actions up to n times.

Having synthesized the controllable invariant, CESAR fills the action guards (Line 4 and
Line 5). An action should be permissible when running it for one iteration maintains the control-
lable invariant. For example, acceleration is safe to execute exactly when [a :=A;plant]e− p >
v2

2B
. We symbolically execute this game to synthesize the formula that fills the guard of Line 4.

When given a problem with solvable ODEs whose solutions are polynomial, CESAR is guaran-
teed to generate a solution in finite time that sound and optimal w.r.t. all k-switching fallback
strategies with permanent actions where k is the number of bounded unrolling recurrences used.
When ODEs are not solvable, we make approximations using continuous invariants. We design
a test that can check whether the result produced is still optimal.

To evaluate CESAR, we curate a benchmark suite with diverse optimal control strategies.
Some benchmarks have non-solvable dynamics, while others require a sequence of clever control
actions to reach an optimal solution. Some have state-dependent fallbacks where the current state
of the system determines which action is “safer”, and some are drawn from the literature. We
implement CESAR in Scala and evaluate it on the benchmarks. Despite a variety of different
control challenges, CESAR is able to synthesize safe and in some cases also optimal safe control
envelopes within a few minutes.

CESAR can fill in holes in a problem of the following shape:

prob ≡ assum ∧ → [
(
(∪i (? i ; acti)) ; plant

)∗
]safe. (1)

Here, the control envelope consists of a nondeterministic choice between a finite number of
guarded actions. Each action acti is guarded by a condition i to be determined in a way that
ensures safety within a controllable invariant [4, 21] to be synthesized also. In addition, we
make the following assumptions:

1. Components assum, safe and domain are propositional arithmetic formulas.

2. Timer variable t is fresh (does not occur except where shown in template).

3. Programs acti are discrete dL programs that can involve choices, assignments and tests
with propositional arithmetic. Variables assigned by acti must not appear in safe. In
addition, acti must terminate in the sense that ⊨ ⟨acti⟩true.

4. The modeling assumptions assum are invariant in the sense that

⊨ assum → [(∪i acti) ; plant]assum.

This holds trivially for assumptions about constant parameters such as A > 0 in Model 1
and this ensures that the controller can always rely on them being true.

9

Proposed work moves past this template to synthesize for a much broader variety of sketches.

2.2 Case Study: Train Control
Train control envelopes decide when to enforce braking to prevent movement authority violation
and collisions. They must account for all the competing influences that govern train motion.
Uphill slopes decrease velocity, for example, which decreases resistance, which permits a more
rapid increase in velocity, slope and curve effect, all while the train’s brake force builds grad-
ually until saturation as air pressure propagates along brake pipes. These complex interactions
make it hard to design an efficient train control envelope, and even harder to ensure it is always
safe. Completed work [24] designs and verifies train controllers for the Federal Railroad Ad-
ministration (FRA) freight train kinematics model [6, 7] (henceforth FRA model), contributing
generalizable verified control envelope design techniques. Ultimately, our synthesis tool should
automatically synthesize for this case study.

Previous case studies of formally verified train motion [34, 42, 49] do not account for at least
two effects amongst track grade, track curvature, resistance, and air brake propagation time,
rendering their results inapplicable to most real-world scenarios. We surmount the challenges of
verification against the full dynamics of the FRA model, in which these effects interact subtly
with each other. Our verification results are significant, because these parameters influence the
motion of the train in safety-critical and/or performance-critical ways. Neglecting track slope
profile and the gradual propagation of air pressure braking, in particular, can render otherwise
verifiably safe train controllers unsafe, since their influence may diminish the train’s ability to
decelerate, causing collisions. Our verification is valid for realistic FRA models [6, 7].

Before verifying envelope safety, we first design the control envelopes, balancing efficiency
with provable safety. Conservative control envelopes are mathematically more simplistic, and
easier to design and verify, but make railway operations inefficient, violating performance ob-
jectives. We start by presenting a conservative safe control envelope and then iteratively make
it more efficient by exploiting characteristics of the physical train dynamics for better but safe
control. Train control envelopes are assessed relative to a (changing) destination stopping point—
called end of movement authority: overshoot of the end of movement authority is a safety vio-
lation, because that risks collision with other trains; efficiency is measured in terms of end of
movement authority undershoot. We prove absence of end of movement authority overshoot
when using our controllers in the FRA model by verification and demonstrate efficiency by sim-
ulation.

To remain as general and widely applicable as possible, our envelopes are written with sym-
bolic parameters. Verification follows a two-stage process: we first prove symbolic mathematical
models of train control, and then obtain proofs of the actual physical models of train control by
uniform substitution [38] to replace the abstract function symbols of the mathematical models
with physical terms specific to the FRA model or even specific railroads. Our proof is written
in differential dynamic logic [37, 38], and performed using the hybrid systems theorem prover
KeYmaera X [19]. We compare the efficiency permitted by our envelope with concrete control
algorithms [6] for a number of train consists (arrangement of locomotives and cars) and scenar-
ios [6], and illustrate their behavior in simulation. The proved models are permissive and only
interfere in train control operation when acting otherwise risks movement authority violation.

10

2.2.1 Generalizable Challenges

We briefly discuss the generalizable challenges encountered in the FRA case study, first provid-
ing the background necessary to understanding them.

Background Eq. (2) shows the mathematical abstraction of the FRA train kinematic model
that we construct and use [24]. It is an ODE in time. The rate of change of position is veloc-
ity, and the rate of change of velocity is acceleration. The variables and constants involved,
along with their signs, when relevant, are (i) Train position p, (ii) velocity v, (iii) velocity
and position-independent component of acceleration al ranging from immediate braking abil-
ity −bmax < 0 to maximum train engine acceleration amax > 0, (iv) acceleration due to air brakes
aa in range abmax < 0 to 0, (v) rate of change mb of air brake acceleration, which is mp < 0
when brakes are ramping up and 0 otherwise, (vi) map as from position to acceleration due to
grade, (vii) map ac from position to acceleration due to curvature, and (viii) velocity-dependent
resistance ar. In the chosen sign convention, resistive acceleration is negative.

p′ = v, v′ = al + aa + as(p) + ar(v) + ac(p), a
′
b = mb (2)

with al ∈ [−bmax, amax], aa = max(ab, abmax),mb ∈ {0,mp}

The Davis equation resistance ar(v) has the shape ar = a1v + a2v
2 when a1 summarizes the

linear coefficient of velocity, and a2 summarizes the quadratic coefficient. Grade and curvature
are represented by unspecified but bounded functions as and ac that map train positions to a
numeric value for acceleration due to slope and average curvature, respectively. The quantity al
summarizes locomotive tractive effort (al ≥ 0) and train deceleration (al < 0) as commanded by
the train controller, with adjustment for the velocity-independent resistance.

In order to decide when free driving (as opposed to braking) is permissible, the control enve-
lope requires an upper bound stopDist(p, v, ab) on the distance covered over one time period
of acceleration and subsequently braking to a stop. The idea is to permit free driving when
the train is far enough from the end of movement authority that it can still stop in time, i.e.
stopDist(p, v, ab) < e − p. Referring back to the train dynamics in Eq. (2), to compute the
stopping distance upper bound, we first need an upper bound for v. Integrating this bound via
p′ = v computes a stopping distance upper bound.

Unknown functions are the first impediment to obtaining a provable upper bound for v. Grade
and curvature maps as and ac are arbitrary functions, constrained only by upper and lower
bounds, and bounded gradients. At runtime, the train knows their exact values as the controller
is instantiated with maps for the railroad it runs on. However, these maps are unknown at proof
time. And yet, the proof has to show safety of the train control ahead of time for all possible
track maps in order to justify safety of the train controller. In order to obtain a provable upper
bound on stopping distance, the proof therefore bases on the limited information that we do have
about the maps: upper bounds on the potential values of as and ac.

A naı̈ve upper bound on as is the value of acceleration that the train experiences when it is
on the steepest permissible downward slope, ms. Our proof shows that the distance required
to stop for any permissible grade map cannot exceed the distance computed with the steepest

11

downward slope. It first shows that the true acceleration is bounded above by an acceleration
that uses the highest permissible value of grade acceleration, then that actual velocity cannot
exceed the velocity computed using the worst-case acceleration, and consequently, that traveled
distance cannot exceed the stopping distance computed using the worst-case estimate of velocity.
Thus, a way to design controllers that depend on functions that are unknown at proof time, such
as sensor noise and potential field effects, is to use worst-case bounds on them derived from
physical constraints, with the syntactic representations and their corresponding proof structures
shown in our paper [24].

Circular Dependencies. In the bounds for the previous section, we did not use some additional
information that we had about track slope and curvature: that their rates of change are bounded
for any given railroad. We would like to use this knowledge to improve the overapproximation of
stopping distance in order to make our controller more efficient. This turns out to be challenging
because of circular dependencies between the variables of motion. We describe the solution for
bounding the gradient using inequality bounds on its derivative, but the technique generalizes to
any situation where a finite-time bound is required on an underdetermined differential equation
system with additional semialgebraic constraints.

The train controller knows the current slope as(p) and vertical curves of the track, which
determine the transitions from one track grade to another. This knowledge results in a bound
hmax on the difference in grade per unit length [22, p.616–619]:

∣∣∂as(x)
∂x

∣∣ ≤ hmax ⇒ |a′s(p)| ≤ vhmax

The second inequality follows from the first using the chain rule and p′ = v. After time T ,
as could have increased by no more than uhmaxT , where u is some upper bound on v over the
course of T time.

The upper bound as on the gradient can now be summarized as

as(p) ≤ as(p0) = min(ms, as(p0) + uhmaxT)

This enables us to improve our estimation of velocity:

v′2 = al + as(p0) + ac(p0) ⇒ v2(t) = v0 +
(
al + as(p0) + ac(p0)

)
T (3)

The upper bound on velocity, u, is undefined in expression (3). We cannot use the bound v2 for
u, since v2 itself is phrased in terms of u. The problem is a circular dependency between as and
v: the bound on slope acceleration as depends on speed v, while the upper bound on speed v, in
turn, depends on slope acceleration as. Physically, this is because if the train is moving faster, we
know less about the nature of the track—its curve and slope—after the passage of some time, as
the train is farther from its previous position on the track. However, we need information about
the grade curve in order to better estimate the velocity at which the train is traveling. In order
to cut through these circular dependencies, we use conservative estimations of these quantities
derived using the naı̈ve bound ms as a base case to bootstrap incrementally finer computations,
presented below.

12

We first use the initial upper bounds ms for as and 0 for ac to get a conservative bound
v(t) ≥ v0 + (amax + ms)t, so that we can set u = v0 + (amax + ms)T . Since (amax + ms)
is a positive upper bound on the acceleration of the train, velocity could not have increased by
more than (amax + ms)T . Hence u is indeed an upper bound on v through the T time interval.
Substituting this u refines the bound on acceleration due to grade.

as(p0) = min(ms, as(p0) +

u︷ ︸︸ ︷
(v0 + (amax +ms)T)hmaxT)

This expression gives the improved definitions of as by replacing placeholder velocity bound u.
In principle, we could further improve this upper bound on speed by using v2 to obtain an even
better bound on as and ac, which in turn could yield an improved bound on v, and so on.

Transcendental Dynamics Exactly accounting for the quadratic dependence of resistance on
velocity leads to an undecidable, transcendental exact solution for stopping distance. The con-
troller must instead use an approximation. Since polynomial arithmetic is decidable, Taylor
polynomials are a natural way to obtain decidable approximations. This section applies Taylor
approximation to the FRA model, identifying techniques generalizable to verified control for
other embedded systems with transcendental dynamics.

The Davis equation implies1 v′ ≥ (amax + as(p) + ac(p)) + a1v + a2v
2, where as and ac

are slope and curve bounds. The first-order Taylor polynomial of this expression for velocity
is v0 +

(
(amax + as(p) + ac(p)) + a1v0 + a2v

2
0

)
t. Using this approximation at time T , with

al = amax, as an upper bound for velocity after a time period of acceleration, we compute an
improved stopping distance approximation that leverages resistance.

v′ = (amax + as(p) + ac(p)) + a1v + a2v
2

stopDistt(v) = vT +

(
amax + as(p) + ac(p)

2

)
T 2 + brakeDista

(
v +

(
v′
)
T, 0

) (4)

This expression is not always an upper bound on stopping distance. It uses resistance for the
original velocity v0, which is only a conservative bound when resistance is low enough to permit
acceleration. This condition is captured by predicate vbound in Eq. (5).

vbound(v) ≡ (amax + as(p) + ac(p)) + a1v + a2v
2 ≥ 0 (5)

For the improved controller, we define stopDisttp (6). It uses vbound (5) to determine when
stopDistt from Eq. (4) is applicable, and a more conservative, always-true bound stopDistb

1This is a lemma for the dL proof justified as follows: consider two identical trains on tracks t1 and t2, starting
with the same velocity. We want to bound the velocity v1 of the train on t1. Suppose t2 is the track with worst case
track and grade, and that a train on t2 (the “ghost train”, that we have constructed for the sake of our argument)
always accelerates so that v′2 = (amax + as(p) + ac(p)) + a1v + a2v

2. On the other hand, on track t1, the real train
that we require a proof about only obeys the restriction |as| < ms. If v2 − v1 is to become negative, it must cross
the boundary where its value is 0. However, whenever v1 = v2, necessarily, v′2 > v′1. This ghost train argument
serves a purpose similar to the circular dependencies technique: to reason about mutually influencing factors one
at a time. The ghost train permits us to represent and reason about a transcendental bound on velocity, v2, derived
using slope and curve estimates as and ac.

13

is used as a fallback.

stopDisttp(p, v, ab) ≡if (vbound(v)) then e− p > stopDistt(v)

else stopDistb(p, v, ab)
(6)

Higher-order Taylor polynomials permit analogous reasoning.

3 Proposed Work
Proposed work generalizes beyond the CESAR template to synthesize for the class of sketches
whose solution can be characterized in dGL.

3.1 Generalizing Control Envelope Synthesis
CESAR synthesizes for a fixed time-triggered template shown in Section 2.1.3. Is there a way to
generalize the ideas of CESAR to solve a more general class of problems? CESAR consists of
two steps: characterizing the solution of a dL sketch using dGL, and then extracting an explicit
solution with formulas in PR by symbolic execution aided by refinement. The first step should
generalize to a broader class of dL sketches. We attempt to characterize the control envelope
sketches where controller behavior at the unfilled holes can be modeled using game theory, where
dGL’s demon acts as an oracle for controller behavior, and angel acts as an oracle for environment
behavior. Eq. (7) shows a natural first guess for such a grammar, where control choice holes
corresponding to demonic control operator in dGL, which we will later see is actually missing
some constraints.

α := β ∈ dL program | (? l ; α) ∪ (? l′ ; β) | (? l ; α)
∗ ; ? l′ | {x′ = f(x)&Q ∧ l} ; ? l′

sketch := assum ∧ init → [α]ϕ
(7)

We first define a program sketch α that extends dL with three controller synthesis constructions.
1. Branching asks which control action the controller can take when. 2. Loop asks when to exit
or continue a control loop. 3. ODE asks how long to continue running an ODE. Then we define
a formula sketch which adds initial assumptions, a hole for initial conditions init, and a safety
contract ϕ that must hold for the program α. A formula sketch (henceforth “sketch”) is what the
user must provide for which the algorithm will try to perform synthesis. Each hole in a sketch has
a unique label. We use the notation l to mean that the hole has the label l. A solution to the
synthesis problem is a map from the label of each hole to the formula in PR that should fill that
hole. A solution is valid when the dL formula that results from filling the sketch by substituting
holes with their mapped solutions is valid.

The idea of this grammar was to identify control problems in which controller behavior at
the unfilled holes could be modeled using dGL games. Eq. (8) concretely shows the mapping
to the game modeling the behavior that is possible within the program sketch using the gamify
function which maps every possible program sketch to a game. Later, it will be used to define an
optimal solution to synthesis for sketches.

14

gamify(? a ; α∪? b ; β) = gamify(α) ∩ gamify(β)

gamify({x′ = f(x)&Q ∧ r} ; ? s) = {x′ = f(x)&Q}d gamify(β ∈ dL program) = β

gamify(α ; β) = gamify(α) ; gamify(β) gamify((? rα
∗) ; ? s) = gamify(α)×

gamify(α ∪ β) = gamify(α) ∪ gamify(β) gamify(α∗) = gamify(α)∗
(8)

While this definition for a sketch might seem natural, it permits bad solutions that get “stuck”,
in the sense that it is possible to reach a state while staying within the control envelope where
the control envelope permits no further transitions or no finite termination strategy. For example,
consider the sketch

init → [{x′ = 1& d}? s]x < 0. (9)

Here variable x keeps growing at the rate of 1 for an amount of time that the ODE decides, and
in the end x must be less than 0. A valid solution is {init 7→ ⊤, d 7→ ⊤, s 7→ x < 0}. This is bad
because it allows the controller to run the ODE past x = 0 without any envelope violations, and
now the only option is to continue running the ODE forever because if the controller should ever
stop, it will fail the exit condition x < 0. In general, we want the property that filled in control
conditions still result in total relations mapping every possible input state to a possible output
state 2. We resolve the problem by introducing assertions that ensure controllability. To express
assertions, we use the fragment of dGL that has all the syntactic structures of dL and additionally
demonic test. We call this fragment dL with assertions, with the syntax ?ϕd to assert ϕ.

α :=β ∈ dL with assertions | (? a ∨ b)
d ; (? a ; α∪? b ; β)

| ?((r ∨ s) ∧ ([(? r ; α)
∗ ; α×] s))

d ; (? r ; α)
∗ ; ? s

| ?(r ∧ ([{x′ = f(x)&Q ∧ r} ; {x′ = f(x)&Q ∧ r}d] s))
d ;

{x′ = f(x)&Q ∧ r} ; ? s

(10)

Observe that now it is possible for there to be multiple holes with the same label: once in the
main control structure, and additionally in the demonic assertions. These must be filled with
the same formula. The additional assertions ensure that the tests introduced by synthesis do not
let the controller get stuck by permitting no further transitions or no finite termination strategy.
For example, consider the first case: (? a ∨ b)

d ; (? a ; α∪? b ; β). Here, when a is true,
we can run α. When b is true, we can run β. The assertion ? a ∨ d

b says that the way

2Concretely, for ? a ; α∪? b ; β, we want to require a and b in a valid solution to be set such that
J? a∪? bKσ ̸= ∅ where the notation JαK shows a binary relation mapping initial states to the final states that
result from running dL program α, and σ is any state reachable from running the part of the synthesized control
envelope that lies before this choice. Similarly, for {x′ = f(x)&Q ∧ r} ; ? s, we would like to require r

and s to be filled in a valid solution such that it is possible to run the program at all, requiring the domain con-
straint to be true initially (J? rKσ ̸= ∅) and additionally after running the ODE following the control envelope
condition r, it is always possible to exit at some point in the future: ∀σ′ ∈ J{x′ = f(x)&Q ∧ r}Kσ(J{x′ =
f(x)&Q ∧ r} ; ? sKσ′ ̸= ∅). Here σ′ is any state that can be reached by running the control envelope upto
(and including) the ODE. Similarly for (? rα

∗) ; ? s, firstly it should be possible to either run the loop or exit
J? r∪? sKσ ̸= ∅, then additionally after running the loop following the control envelope condition r, it is
always possible to exit at some point in the future: ∀σ′ ∈ J(? rα

∗)Kσ(J? rα
∗) ; ? sKσ′ ̸= 0).

15

we fill a and b must be such that there is at least one option, running either α or β, so that
the controller does not get stuck. Similarly, in the second case, r says when it is ok to run
the ODE, while s says when it is possible to stop the ODE. The assertion ?(r ∧ ([{x′ =
f(x)&Q ∧ r} ; {x′ = f(x)&Q ∧ r}d] s))

d has two parts. The first, r says that it should
be possible to run the ODE, if only for 0 time, so that the dL program does not get stuck. The
second, [{x′ = f(x)&Q∧ r} ; {x′ = f(x)&Q∧ r}d] s, says that if the control envelope has
let you run the ODE, then there should be a way terminate it eventually, so that the controller is
not stuck running the ODE forever. This condition in fact prevents the counterexample of Eq. (9).

While these assertions might seem complicated, their meaning is in fact intuitive, and their
inclusion makes the sketch correspond more closely to dGL. The definition of gamify is modi-
fied to handle the new control conditions but remains largely the same as before. Eq. (11) shows
the new definitions and elides the mappings that remain the same as Eq. (8).

gamify((? a ∨ b)
d ; (? a ; α∪? b ; β)) = gamify(α) ∩ gamify(β)

gamify(?(r ∧ ([{x′ = f(x)&Q ∧ r} ; {x′ = f(x)&Q ∧ r}d] s))
d ;

{x′ = f(x)&Q ∧ r} ; ? s) = {x′ = f(x)&Q}d

gamify(?((r ∨ s) ∧ ([(? r ; α)
∗ ; α×] s))

d ; (? r ; α)
∗ ; ? s) = gamify(α)×

gamify(?ϕd) =?ϕd

(11)

3.1.1 dGL Solution

We define the model predictive solution [12, 20] for a sketch by mapping each hole to the result
of running the rest of the sketch, where the behavior at the decision points with unfilled holes is
decided using game theory, where demon acts as an oracle and takes a decision.
Definition 1 (Model Predictive Controller) For the sketch assum ∧ init → [α]ϕ, the model
predictive solution is

{ j 7→ [gamify(fwd(j, α)]ϕ) | j ∈ (labels(α) ∪ {init})}

In this definition, fwd(j, α) gives the forward continuation showing what would happen in the
sketch after the hole with label j. Its formal definition is as expected, shown in Appendix A,
Eq. (A). labels(α) is the set of all labels used for the holes in the program sketch α excluding
those that are inside a demonic assertion3.

Like in CESAR, we define a partial ordering on solutions to characterize what kinds of solu-
tions our algorithm should try to synthesize. Intuitively, solution S is “better” (⊒) than solution
S ′ when S is more permissive, with weaker formulas allowing more control actions, because this
allows more correct control solutions and will allow specialized controllers running within the
envelope the most freedom to run efficiently. Additionally, formulas must be considered in the

3The exclusion of labels inside a demonic assertion does not matter for sketches generated per grammar Eq. (10)
because demonic assertions involving a label always appear alongside its mention in a control condition, but it
makes the definitions in Appendix A, which do structural induction that breaks apart demonic assertions and their
corresponding control decision, cleaner.

16

context in which they execute.4 This is taken into account by using the execution prefix as it
would occur while executing the less permissive solution.
Definition 2 (Solution Ordering) For two valid solutions S1 and S2 of the sketch assum∧ →
[α]ϕ, S1 ⊒ S2 iff

∀l ∈ labels(α)(|= assum → [subst(prefixl(α), S2)](S2(l) → S1(l)))

Here, prefixl produces the sketch that is the execution prefix of the hole labeled l in the given pro-
gram sketch. Appendix A, Fig. 1 shows its formal definition, which is as expected. |= ϕ means
that formula ϕ is valid. subst(α, S) means to substitute into each hole in sketch α the corre-
sponding formula to which S maps its label. We conjecture that the model predictive solution
is a maximum element of the ordering, with the proof idea generalizing CESAR’s dGL solution
optimality proof to the new control structures while performing additional structural induction
over the sketch.
Conjecture 1 The model predictive solution of Def. 1 is a maximum solution of the controller
synthesis problem using the ordering in Def. 2.
Conjecture 1 is important to this thesis, and it being true and provable would indicate that our
choice of definitions is good.

Further, we conjecture that every dGL program is a solution to some envelope synthesis
problem, suggesting that the proposed sketches are “general enough”, leveraging all the power
of dGL. The proof idea is that gamify is surjective, and to go from dGL to a sketch, one can
simply invert it. While this result would be nice to have, it is not crucial to the rest of the thesis.
Conjecture 2 Every dGL game expresses the solution to a control envelope synthesis for a sketch
expressible in the grammar of Eq. (10).

3.1.2 Solving

We conjecture that this style of model predictive solving works even when we have to approxi-
mate the formulas for some of the labels. The difficulty is that if any hole i departs from the ideal
model predictive solution, we must account for the difference in any hole j that interacts with i
because i lies in the forward continuation of j. Conjecture 3 shows how we can do this. It forms
the basis of our structurally recursive solving algorithm.
Conjecture 3 For the sketch assum ∧ init → [α]ϕ, and some valid solution S, the solution S ′

obtained by updating the mappings in S with the new mappings below starting at any one label
j is also valid:

S ′ := { k 7→ [gamify(fwd(k, subst(α, S)]ϕ) | j appears in fwd(k)}.

Further, amongst all the solutions that preserve the unchanged labels, S ′ is a maximum. Let the
set of unchanged labels be L = {k | k ∈ labels(α) ∧ j does not appear in fwd(k)}. For any
solution S ′′ preserving unchanged labels so that ∀l ∈ L(S ′′(l) = S(l)), S ′ ⊒ S ′′.

4For example, it is always possible to return a control envelope that assumes false in the first hole expressing the
initial conditions under which the controller applies, and sets all the other holes to ⊤, which allows any controller
decision because no control flow ever reaches them. The controller should not “receive credit” for the greater
permissiveness of the later control points that are never reachable anyway.

17

A proof should be possible using the same strategy as Conjecture 1, but now treating the solved
part of the sketch beyond label j as if it were a pure game (resulting from filling the holes with
original solution S), with no holes in the first place.

This suggests a structurally recursive solving function, solve shown in Eq. (12). The intu-
ition is to first solve for labels later in the sketch and then, according to the results, update labels
that are earlier (in the sense that their continuation includes later holes) in the style of the model
predictive controller. An important primitive that the solve function uses is symbolic execution
exec([α]ϕ) for game α and postcondition ϕ that uses the axioms of dGL to compute a formula
in PR that implies [α]ϕ, and is ideally equivalent to it. In the fragment of dGL excluding loops
and ODEs, exact symbolic execution is possible and |= [α]ϕ ↔ exec([α]ϕ). But in the cases
of complex ODEs and loops, exact symbolic execution is intractable. In these instances, we are
forced to instead return the weakest formula we can construct that implies [α]ϕ. The implemen-
tation exec is trivial for dGL excluding loops and ODEs, and is already discussed for ODEs
in the completed work [25]. But for loops, an implementation of exec is proposed using the
heuristics described in Section 3.1.4, and later using LLMs in Section 3.2.

The effect on solve when exec returns a formula that implies its argument rather than being
equivalent to it is that we depart from the optimal, model predictive solution and instead fill the
hole currently being computed with a sound but not necessarily optimal formula. Conjecture 3
says that the best way to proceed after exec returns an answer that is stronger than optimal is to
continue with the model-predictive solution for the rest of the sketch.

solve(α ; β, ϕ) = S ⊎ solve(α, exec[subst(β, S)]ϕ) where S := solve(β, ϕ)
solve(α∗, ϕ) = solve(α, exec[gamify(α)∗]ϕ)
solve(α ∪ β, ϕ) = solve(α) ⊎ solve(β)

solve(α ∈ atomic dL program) = solve(?ϕd) = ∅
solve((? a ∨ b)

d ; (? a ; α∪? b ; β), ϕ) =

{ a 7→ exec[subst(α, Sα)]ϕ,

b 7→ exec[subst(β, Sβ)]ϕ} ⊎ Sα ⊎ Sβ

where Sα := solve(α, ϕ) and Sβ := solve(β, ϕ);

solve(?((r ∨ s) ∧ (r → [{x′ = f(x)&Q}d] s))
d ; {x′ = f(x)&Q ∧ r} ; ? s, ϕ)

= { s 7→ ϕ, r 7→ exec[{x′ = f(x)&Q}d]ϕ}
solve(?((r ∨ s) ∧ (r → [gamify(α)×] s))

d ; (? r ; α)
∗ ; ? s)

= solve(α, ψ) ⊎ { s 7→ ϕ, r 7→ ψ}where ψ = exec[gamify(α)×]ϕ

(12)

The operator ⊎ takes the union of disjoint solutions (each label has a mapping in at most one
solution), where the result has the mappings of both solutions. The overall solution of sketch
assum∧ init → [α]ϕ is computed as S⊎{init 7→ assum → exec([subst(α, S)]ϕ)} where S :=
solve(α, ϕ). A proof that this is a valid solution should be possible using structural induction.

We show how solve works on the example of Model 1, with the holes init on Line 3, 3

on Line 4 and 4 on Line 5. First, we compute S := solve(α, ϕ) to be { 3 7→ e − p >
vT + AT 2/2 + (v + AT)2/2B, 4 7→ v2/2B}, and later solve for init. In this case, α is
(ctrl ; plant)∗ where ctrl and plant are as in Model 1, and ϕ is e−p > 0. Looking at the definition

18

Model 2 The game characterizing the solution to event the event-triggered ETCS train model.

assum
∣∣ 1 A > 0 ∧B > 0 ∧ T > 0 ∧ v ≥ 0 → [

envLoop
∣∣ 2 {t := 0 ;

cntrlLoop
∣∣ 3 {

accChoice

∣∣∣∣∣ 4 acclrt
∣∣(a :=A

5 brake
∣∣ ∩ a :=−B) ;

plant
∣∣ 6 {p′ = v, v′ = a, t′ = 1 & t ≤ T ∧ v ≥ 0}d∣∣ 7 }⊗ ; ?t ≥ 1d}∗]

safe
∣∣ 8 (e− p > 0)

of solve(α∗, ϕ), we first need to compute loop invariant ψ which in our case is v2/2B, computed
by heuristics discussed later. Then, the result to return is solve(ctrl ; plant, ψ). Now, looking at
the definition of solve(α ; β, ϕ), we must first compute solve(plant, v2/2B), which is ∅ because
plant has no holes, and then compute solve(ctrl, [plant]v2/2B). As ctrl is a choice with holes,
the relevant definition is solve((? a ∨ b)

d ; (? a ; α∪? b ; β), ϕ), where a is 3 and b is
4. The demonic assertion here, although not explicitly written in Model 1, is implicitly present

because of the controllability side condition of CESAR solutions. The definition of solve says
that we must first solve for any nested holes in the two branches, producing sub-solutions Sα

and Sβ . These are both ∅ because there are no nested holes. Then, we need to return solution
{ 3 7→ solve(Model 1 Line 4, [plant]v2/2B), 4 7→ solve(Model 1 Line 5, [plant]v2/2B)}.
Performing symbolic execution for these results in the expected solution S for the program
sketch. Next, we set init to assum → [subst(α, S)]ϕ where assum is Model 1 Line 1 while
[subst(α, S)]ϕ is Line 5 to Line 8. Symbolic execution with invariant v2/2B for the loop again
results in the initial condition v2/2B. This overall solution has only one difference from the
shown CESAR output, that 4 7→ v2/2B instead of true, which is also superficial and a result of
simplifying the control condition v2/2B in the context of loop invariant v2/2B.

3.1.3 Increased Expressivity

Our proposal of generalizing to all of dGL allows synthesis for genuinely new control challenges
that were not possible before. For example, for the train example of Model 1 that CESAR solves,
our proposal lets us generalize to a couple of new, interesting formulations that we couldn’t
before: the full European Train Control System model including radio block controller decisions
from the paper [10], and an event-triggered train controller. We give an example of an event-
triggered train controller here. Like in Model 1, the train controller has two choices: to brake
or to accelerate. However, instead of making a decision with time latency T , the controller can
now set an event trigger, a condition under which it will wake up to reevaluate its decision. This
condition must be synthesized. Model 2 shows the optimal solution game.

19

3.1.4 Heuristics

As described in completed work (Section 2.1), dGL games can be symbolically executed, except
for ODEs and demonic or angelic loops. CESAR’s continuous invariant-based approach to com-
pute the effect of ODEs generalizes. But its handling of angelic loops via the bounded unrolling
game refinement is specific to the specific shape supported by CESAR and does not easily gen-
eralize to arbitrary angelic loops or demonic loops. So we require a way to reason about the
fixed-point behavior of loops while achieving a given objective in arbitrary dGL games. Fortu-
nately, algorithms for estimating the effect of loops exist in the literature [41]. We apply these
and other additional heuristics.

The rest of the section presents heuristics to guess the behavior of a loop when run for un-
bounded time. Given a loop body p and a safety condition S, heuristics approximate [p∗]S or
[p⊗]S. Each heuristic will guess the fixed point of the loop, which is then checked before it is
accepted to make sure the heuristic is not soundness-critical.

Symbolic Regression. For loop body p and safety constraint S, consider the map f ≡ n 7→
[pn]S that provides the precondition for running the loop for a given number of iterations n.
Given an expression for f(n), we can approximate [p∗]S as ∀n ∈ {0, 1, 2 · · · } (f(n)), and [p⊗]S
as ∃n ∈ {0, 1, 2 · · · } (f(n)). Symbolic regression lets us guess the expression for f(n). The idea
is to compute the map f for a few values of n by symbolically executing the loop and then to use
symbolic regression libraries such as PySR [11] to predict the expression for f(n). This method
is useful when the phase has characteristically uniform behavior over time that can be captured
with a simple closed-form expression.

Template Based Constrained Solving. Often, the form of the dynamics and postcondition
lets us guess the shape of the fixed point of a loop, but not the exact values of all expressions.
In such cases, we guess a “template” for the invariant. For example, template T ≡ l ≤ x ≤ u
bounds state variable x with some lower bound l and upper bound u whose exact expressions
we must synthesize. If T is to be inductive for loop p∗ then T → [p]T is valid. So we can
solve for l and u using constrained symbolic optimization: l ≡ minimize(l in region ∀x(T →
[p]T)), and analogously for u. Likewise for demon loop, when T is a valid fixed point for
[p⊗]S then T → [p]T ∨ S is valid. Again, constrained symbolic optimization computes l ≡
minimize(l in region ∀x(T → [p]T ∨ S)), and analogously for u. Template generation is guided
by the shape of the postcondition and the shape of the differential equations inside the loop
similar to [41].

Separating Continuous State for Symbolic Reasoning. The idea of CESAR’s refinements
is to leverage that under certain control strategies, the continuous portions of the loop body are
affected only in limited, predictable ways by the discrete portion of the loop. This lets CESAR’s
refinements approximate a hybrid problem with a continuous one: the effect of unbounded loop
iterations on some state variables is emulated by running the underlying ODEs for unbounded
times. For example, in Model 1, suppose that the train was restricted to braking (so that Line 4 is
removed from the loop body). Observe that state variable p is only written to by the ODE (Line 6)

20

which itself follows a smooth trajectory across loop iterations, as none of its input quantities are
changed from their values in previous iterations. Thus the effect of running many iterations of
the loop on variable p is merely to modify p per the ODE solution, p = vt+ 1

2
at2. Other parts of

the state (variable t) do not follow the ODE and are, in fact, changed by discrete assignments in
every iteration (at the start of Line 6). But this is not a problem: knowledge of t does not end up
being required to prove the postcondition (Line 8) which involves only p and constants.

More generally, there are three steps whose specialization in the CESAR template yields the
foundation of its systematic refinements, that apply to a broader class of problems. Given a loop
body α, we describe the steps with the running example of the loop body for Model 1 restricted
to braking (with Line 4 removed).

1. Separate out the continuous part of the loop body into game αc using static analysis, where
all discrete assignments and tests on variables set by discrete assignments are erased. For
Model 1, this is {p′ = v, v′ = a & v ≥ 0}.

2. Reason about variables affected by discrete assignments separately to make predictions
about reachable values using the other heuristics and invariant generation techniques. In
the running example, after any positive number of iterations of the loop, a = −B.

3. Then, symbolically execute αc and universally quantify over all variables affected by dis-
crete assignments within the region identified by the previous step to conservatively un-
derapproximate the precondition. For Model 1, symbolically executing ∀t∀a[{p′ = v, v′ =
a & v ≥ 0}]e− p > 0 under assumptions B > 0 ∧ a = −B yields e− p > v2/2B.

This reasoning is useful when there is a control strategy such that the system’s continuous be-
havior is smooth over many iterations of the loop. This is a class of systems that extends beyond
the CESAR template but is hard to characterize syntactically because it is defined by a property
of the possible strategies in a game. So, we allow the technique to apply to all games and then
check the correctness of the predicted invariant afterwards to ensure correctness.

Comparison of Heuristics. Each of these heuristics has advantages and disadvantages in terms
of generality and computational complexity. We propose to perform an evaluation on a suite of
benchmarks to identify which heuristic is best suited to solve which problem.

3.2 LLM Assisted Synthesis
In practice, the limiting factor to scale to more and more complex synthesis problems is the
intractability of the underlying computer algebra. Quantifier elimination (QE), required to an-
swer questions like “under what preconditions will planes circling with constant angular velocity
be safe for all time”, is especially difficult, having doubly exponential complexity [14]. Further-
more, the output of existing QE implementations is unnecessarily large and redundant. In iterated
calls to QE, these problems can compound each other so that symbolic execution becomes in-
tractable. But in our synthesis algorithm, such arithmetic calls are grounded in intuitive physical
questions that an LLM can answer. For example, the questions about the circling planes is cor-
rectly answered by GPT-4o and Gemini5, while a symbolic solution would involve reasoning

5The prompt is “Two planes are traveling along the same 2D circle clockwise.
The first has angular velocity omega1. The second has angular velocity

21

about trigonometric solutions, already departing from the decidable fragment of real arithmetic
(the arithmetic of transcendental functions is undecidable [44]). To make synthesis scale to more
complex questions, we propose using LLMs as oracles for the “hard” parts of symbolic execu-
tion. The output of the LLM is checked symbolically to recover formally guaranteed correctness.

3.2.1 Arithmetic Queries

The symbolic execution of games that is essential to our synthesis approach attempts to compute
the winning region P of a game α given postcondition S such that P → [α]S, with a preference
to make P as weak as possible. Our approach so far to computing the preconditions in the
hard cases where α is a loop or an ODE has been to find approximations using refinements and
heuristics. Although this works well for problems of some shapes, we propose an approach for
scaling to greater generality and arithmetic complexity. The approach is to tune a system that
asks an LLM to guess preconditions instead and subsequently checks the result formally. Our
proposed system asks a line of questions to an LLM following some prompting strategy which
determines how to construct prompts for the LLMs, and how to respond to the possible outputs,
asking for corrections on incorrect answers. To obtain more accurate responses, the system uses
few shot prompting [8], where examples demonstrate to the LLM how to respond to a given type
of query. Finally, a search strategy says how long to pursue a given thread of queries and at
what point to branch with a new line of questioning because of potential mode collapse or errors
in the context. The proposed work focuses on determining precisely what the right prompting
strategy, examples, and search strategy should be. Such a system can be implemented at lower
engineering effort using Delphyne, a framework that Jonathan Laurent is currently building [27],
which introduces and supports precisely this prompting strategy-example-search architecture.

3.2.2 Phase Based Control Guidance Input

We propose another complementary way to make synthesis scale by allowing the algorithm to
solve simpler symbolic execution problems and composing the results. When humans reason
about loop execution to meet a control objective, they often use a combination of high-level
intuition about a control strategy and careful reasoning about the precise mathematical behavior
of this control strategy. A control strategy is a high-level plan for how to control a system to meet
a control objective. Our proposed method accepts user high-level guidance about the strategy the

omega2. What is the mathematical condition to ensure that they maintain
a distance of separation d for all time t? The last line of your answer
should be only the mathematical formula, with no other explanation”. In an experi-
ment performed on August 17, 2024, GPT-4o correctly responded ω1 = ω2, while Gemini responded ω2 − ω1 = 0.
The question asked here is intuitively obvious to humans but symbolically difficult to compute. Using LLMs as a
proxy for human intuition, we get past the problem. This example also shows the basic structure of a prompt that
asks for the precondition of a program. There are three pieces of information: (1) agents/components (two planes)
follow some (2) dynamical trajectory (a 2D circle), and there is a (3) goal (maintain a distance of separation d for
all time t). We will obtain these pieces of information either by automatic inference from the problem (e.g. an LLM
infers that the ODE of the problem shows circular motion, providing item 2), or by soliciting additional user input
along with the problem sketch (e.g. the user says there are two agents in the problem, plane1 with angular velocity
ω1 and plane2 with angular velocity ω2, providing item 1).

22

controller should execute to be safe, which is easy for humans to provide using intuition. It
then leverages the properties of the synthesis system designed so far to perform more effective
symbolic execution and solve more complex synthesis problems.

To make the idea of a strategy more concrete, consider as an example the aircraft collision
avoidance system [40] that prevents collision of planes with intersecting paths by having them
circle around like in a roundabout before exiting at the angle that would take them back to
their original path, thus maintaining sufficient separation. In this case, the overall system of
two planes maintains the safety property of keeping separation distance p by following a control
strategy. (1) the planes agree on a point to circle about while flying on their original paths, (2) the
planes deviate from their original paths to enter the roundabout, (3) the planes circle around the
roundabout, and (4) the planes exit the roundabout to fly back to their original paths. This control
strategy is a sequence of 4 phases. Each phase involves uniform behavior over a period of time,
rather than unpredictable changes in every loop iteration. This uniform behavior makes it easier,
especially for LLMs, to reason symbolically, because LLMs are good at reasoning about special
cases of motion like uniform circular motion or parabolic motion.

Finally, the results of symbolically reasoning about successive phases can be composed to
create an improving control envelope (successively less conservative). Conjecture 4 lets us start
with a suboptimal but sound solution for a phase and obtain an improving envelope by running
a new phase but retaining the option to transition to the solved phase. A proof of this conjecture
should follow from structural induction and disjunction introduction.
Conjecture 4 For the sketch assum ∧ init → [α]ϕ, and valid solution S with the property

∀k ∈ (labels(α) ∪ {init}(S(k) → [subst(fwd(k, α), S)]ϕ))

an expanded solution S ′ with the following property is also valid.

∀k ∈ labels(α) ∪ {init}(S ′(k) 7→ S(k) ∨ ϕk where |= ϕk → [subst(fwd(k, α), S ∨ S ′)]ϕ)

where S ∨ S ′ = { k 7→ S(k) ∨ S ′(k) | k ∈ (labels(α) ∪ {i}}.
A solving function using Conjecture 4 can be obtained by modifying the one in Eq. (12). It
would accept as an additional argument an existing solution S representing the envelope solved
so far for a sequence of phases. Then, to obtain the envelope corresponding to the addition of a
new phase to the sequence, where symbolic execution of games appeared in Eq. (12), the target
postcondition is expanded using S, and the game is symbolically executed under the current
phase, generating a new formula (ϕk in Conjecture 4) that is checked to still imply that it is safe
to run the original game that was harder to execute. In this sense, phases act like refinements,
transforming games to be harder for the demon but easier to symbolically execute, except that
there is no formal guarantee that the transformed game induced by a phase is indeed harder for
the controller, and the result of symbolic execution is instead checked after it is computed.

4 Related Work
Hybrid controller synthesis has received significant attention [5, 29, 46], with popular approaches
using temporal logic [3, 5, 48], games [36, 47], and CEGIS-like guidance from counterexamples

23

[1, 13, 43, 45]. However, this thesis is about synthesizing control envelopes that strive to rep-
resent not one but all safe controllers of a system. Generating a valid solution to the control
envelope synthesis problem is easy. There is always a trivial solution where the initial condi-
tion init under which the control envelope applies is ⊥ (never). The challenge is optimality,
where a control envelope should represent as many valid solutions as possible. Optimality im-
poses a higher-order constraint because it reasons about the relationship between possible valid
solutions. It cannot, for example, fit the CEGIS quantifier alternation pattern ∃∀. We solve the
problem of identifying an optimal solution by finding a differential game logic characterization.

Safety shields computed by numerical methods [2, 16, 26] serve a similar function to our con-
trol envelopes and can handle dynamical systems that are hard to analyze symbolically. However,
they scale poorly with dimensionality and do not provide rigorous formal guarantees due to the
need of discretizing continuous systems. Compared to our symbolic approach, they cannot han-
dle unbounded state spaces (e.g. our infinite corridor) nor produce shields that are parametric in
the model’s parameters without hopelessly increasing dimensionality.

Using LLMs for planning in hybrid systems is an idea that has received research attention
[9, 15, 28]. Planning is related to, but different from control envelope synthesis. Its objective
is generally to find an efficient path to achieve a goal, and it usually operates at a task-oriented,
higher level of abstraction than control envelope synthesis. We focus on using LLMs to solve
symbolic control envelope synthesis, an application that has not been tackled before and requires
research to identify the right approach to prompt generation and checking LLM outputs.

5 Timeline
The proposed timeline spans one year.

Generalized Synthesis Framework. The first proposed goal is to create a generalized synthe-
sis framework for all synthesis problems whose optimal solution can be expressed in dGL. The
task will take 4 months overall with further milestones as follows:

• Formalizing the class of synthesis problems whose optimal solution is characterized in
dGL.

• Designing solving heuristics to approximate control envelope solutions given the dGL
characterization.

• Implementation of a tool that performs generalized control envelope synthesis.
• Publication strategy: aim to submit this work to CAV or TACAS 2025.

Scaling complexity with LLMs. The task of using LLMs to scale the complexity of synthe-
sis problems that our system can handle is planned to take 8 months. There are the following
milestones.

• Baseline implementation where symbolic execution steps that previously relied on heuris-
tics and quantifier elimination procedure now instead use LLMs.

24

• Tune the system by identifying the prompts, examples for few-shot prompting, and search
strategies that work best.

• Design and implement the phase-based supplemental guidance system that lets the user
specify phases of the strategy and incrementally grows envelopes based on these phases.

• Evaluate the system on benchmarks derived from the literature.
• Publication strategy: submit to a machine learning or formal methods venue in fall 2025.

25

References
[1] Alessandro Abate, Iury Bessa, Lucas C. Cordeiro, Cristina David, Pascal Kesseli, Daniel

Kroening, and Elizabeth Polgreen. Automated formal synthesis of provably safe digital
controllers for continuous plants. Acta Informatica, 57(1-2):223–244, 2020. doi: 10.1007/
s00236-019-00359-1. 4

[2] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe reinforce-
ment learning via shielding. Proceedings of the Aaai Conference on Artificial Intelligence,
32, 2018. doi: 10.1609/aaai.v32i1.11797. 4

[3] M. Antoniotti and B. Mishra. Discrete event models+temporal logic=supervisory con-
troller: automatic synthesis of locomotion controllers. In Proceedings of 1995 IEEE In-
ternational Conference on Robotics and Automation, volume 2, pages 1441–1446 vol.2,
1995. doi: 10.1109/ROBOT.1995.525480. 4

[4] G. Basile and Giovanni Marro. Controlled and conditioned invariant subspaces in linear
system theory. Journal of Optimization Theory and Applications, 3:306–315, 05 1969. doi:
10.1007/BF00931370. 2.1.3

[5] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal Methods for Discrete-Time
Dynamical Systems. Springer Cham, 2017. ISBN 978-3-319-50763-7. 4

[6] Joe Brosseau, Bill Moore Ede, Shad Pate, RB Wiley, and Joe Drapa. Development of an
operationally efficient PTC braking enforcement algorithm for freight trains. Technical
Report DOT/FRA/ORD-13/34, 2013. 2.2

[7] Joseph Brosseau and Bill Moore Ede. Development of an adaptive predictive braking en-
forcement algorithm. Technical Report FRA/DOT/ORD-9/13, Federal Railroad Adminis-
tration, 2009. (document), 1, 2, 2.2

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165. 3.2.1

[9] A. Capitanelli. A framework for neurosymbolic robot action planning using large language
models. Frontiers in Neurorobotics, 18, 2024. doi: 10.3389/fnbot.2024.1342786. 4

[10] Ana Cavalcanti and Dennis Dams, editors. FM 2009: Formal Methods, 16th International
Symposium on Formal Methods, Eindhoven, Netherlands, November 2-6, 2009, Proceed-
ings, volume 5850 of LNCS, Berlin, 2009. Springer. 3.1.3, 5

[11] Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregres-
sion.jl, 2023. URL https://arxiv.org/abs/2305.01582. 3.1.4

[12] Charles R. Cutler and Brian L. Ramaker. Dynamic matrix control—a computer control
algorithm. IEEE Transactions on Automatic Control, 17:72, 1979. URL https://api.
semanticscholar.org/CorpusID:122480259. 3.1.1

26

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.01582
https://api.semanticscholar.org/CorpusID:122480259
https://api.semanticscholar.org/CorpusID:122480259

[13] Hongkai Dai, Benoit Landry, Marco Pavone, and Russ Tedrake. Counter-example guided
synthesis of neural network lyapunov functions for piecewise linear systems. 2020 59th
IEEE Conference on Decision and Control (CDC), pages 1274–1281, 2020. 4

[14] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. J.
Symb. Comput., 5(1/2):29–35, 1988. 3.2

[15] Y. Ding, X. Zhang, X. Zhan, and S. Zhang. Task-motion planning for safe and efficient
urban driving. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020. doi: 10.1109/iros45743.2020.9341522. 4

[16] J. Fisac, A. Akametalu, M. Zeilinger, S. Kaynama, J. Gillula, and C. Tomlin. A general
safety framework for learning-based control in uncertain robotic systems. Ieee Transactions
on Automatic Control, 64:2737–2752, 2019. doi: 10.1109/tac.2018.2876389. 4

[17] Nathan Fulton and André Platzer. Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In Sheila A. McIlraith and Kilian Q. Weinberger,
editors, AAAI, pages 6485–6492. AAAI Press, 2018. URL https://www.aaai.org/
ocs/index.php/AAAI/AAAI18/paper/view/17376. 1

[18] Nathan Fulton and André Platzer. Safe reinforcement learning via formal methods: To-
ward safe control through proof and learning. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial In-
telligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.
(document)

[19] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems. In CADE, pages 527–
538, 2015. doi: 10.1007/978-3-319-21401-6 36. 2.2

[20] Carlos E. Garcı́a, David M. Prett, and Manfred Morari. Model predictive control: Theory
and practice—a survey. Automatica, 25(3):335–348, 1989. ISSN 0005-1098. doi: https:
//doi.org/10.1016/0005-1098(89)90002-2. URL https://www.sciencedirect.
com/science/article/pii/0005109889900022. 3.1.1

[21] Bijoy K. Ghosh. Controlled invariant and feedback controlled invariant subspaces in the
design of a generalized dynamical system. In 1985 24th IEEE Conference on Decision and
Control, pages 872–873, 1985. doi: 10.1109/CDC.1985.268620. 2.1.3

[22] William Walter Hay. Railroad engineering. Wiley, New York, 2nd ed. edition, 1982. ISBN
0471364002. 2.2.1

[23] Aditi Kabra, Stefan Mitsch, and Andre Platzer. Verified Train Controllers for the Federal
Railroad Administration Train Kinematics Model: Balancing Competing Brake and
Track Forces (Models and Proofs). 8 2022. doi: 10.1184/R1/19542610.v1. URL
https://kilthub.cmu.edu/articles/software/Verified_Train_
Controllers_for_the_Federal_Railroad_Administration_Train_
Kinematics_Model_Balancing_Competing_Brake_and_Track_Forces_
Models_and_Proofs_/19542610. (document)

27

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17376
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17376
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://kilthub.cmu.edu/articles/software/Verified_Train_Controllers_for_the_Federal_Railroad_Administration_Train_Kinematics_Model_Balancing_Competing_Brake_and_Track_Forces_Models_and_Proofs_/19542610
https://kilthub.cmu.edu/articles/software/Verified_Train_Controllers_for_the_Federal_Railroad_Administration_Train_Kinematics_Model_Balancing_Competing_Brake_and_Track_Forces_Models_and_Proofs_/19542610
https://kilthub.cmu.edu/articles/software/Verified_Train_Controllers_for_the_Federal_Railroad_Administration_Train_Kinematics_Model_Balancing_Competing_Brake_and_Track_Forces_Models_and_Proofs_/19542610
https://kilthub.cmu.edu/articles/software/Verified_Train_Controllers_for_the_Federal_Railroad_Administration_Train_Kinematics_Model_Balancing_Competing_Brake_and_Track_Forces_Models_and_Proofs_/19542610

[24] Aditi Kabra, Stefan Mitsch, and André Platzer. Verified train controllers for the federal rail-
road administration train kinematics model: Balancing competing brake and track forces.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(11):
4409–4420, 2022. doi: 10.1109/TCAD.2022.3197690. (document), 1, 2, 2.2, 2.2.1, 2.2.1

[25] Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer. CESAR: Control en-
velope synthesis via angelic refinements. In Laura Kovacs and Bernd Finkbeiner, editors,
TACAS, LNCS. Springer, 2024. (document), 1, 2, 3.1.2

[26] Mykel J Kochenderfer, Jessica E Holland, and James P Chryssanthacopoulos. Next genera-
tion airborne collision avoidance system. Lincoln Laboratory Journal, 19(1):17–33, 2012.
4

[27] Jonathan Laurent. Learning to Discover Proofs and Theorems Without Supervision. Ph.d.
thesis proposal, Carnegie Mellon University, Pittsburgh, USA, 2022. 3.2.1

[28] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: language model programs for embodied control, 2022. 4

[29] Siyuan Liu, Ashutosh Trivedi, Xiang Yin, and Majid Zamani. Secure-by-construction syn-
thesis of cyber-physical systems. Annual Reviews in Control, 53:30–50, 2022. ISSN 1367-
5788. doi: https://doi.org/10.1016/j.arcontrol.2022.03.004. 4

[30] Sarah M. Loos and André Platzer. Safe intersections: At the crossing of hybrid systems
and verification. In Kyongsu Yi, editor, ITSC, pages 1181–1186, 2011. doi: 10.1109/ITSC.
2011.6083138. 1

[31] Stefan Mitsch and André Platzer. ModelPlex: Verified runtime validation of verified cyber-
physical system models. In Borzoo Bonakdarpour and Scott A. Smolka, editors, RV, vol-
ume 8734 of LNCS, pages 199–214. Springer, 2014. doi: 10.1007/978-3-319-11164-3 17.
1

[32] Stefan Mitsch and André Platzer. Modelplex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des., 49(1-2):33–74, 2016. doi: 10.1007/
s10703-016-0241-z. (document), 1

[33] Stefan Mitsch, Sarah M. Loos, and André Platzer. Towards formal verification of freeway
traffic control. In Chenyang Lu, editor, ICCPS, pages 171–180. IEEE, 2012. doi: 10.1109/
ICCPS.2012.25. 1

[34] Stefan Mitsch, Marco Gario, Christof J. Budnik, Michael Golm, and André Platzer. Formal
verification of train control with air pressure brakes. In RSSRail, pages 173–191, 2017. doi:
10.1007/978-3-319-68499-4 12. 1, 2.2

[35] Andreas Müller, Stefan Mitsch, and André Platzer. Verified traffic networks: Component-
based verification of cyber-physical flow systems. In ITSC, pages 757–764, 2015. doi:
10.1109/ITSC.2015.128. 1

[36] A. Nerode and A. Yakhnis. Modelling hybrid systems as games. In Decision and Control,
1992., Proceedings of the 31st IEEE Conference on, pages 2947–2952 vol.3, 1992. doi:
10.1109/CDC.1992.371272. 4

[37] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):

28

143–189, 2008. ISSN 0168-7433. doi: 10.1007/s10817-008-9103-8. 2.2

[38] André Platzer. A complete uniform substitution calculus for differential dynamic logic. J.
Autom. Reas., 59(2):219–265, 2017. doi: 10.1007/s10817-016-9385-1. 2.2

[39] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Cham, 2018.
ISBN 978-3-319-63587-3. doi: 10.1007/978-3-319-63588-0. 2.1.1, 2.1.1

[40] André Platzer and Edmund M. Clarke. Formal verification of curved flight collision avoid-
ance maneuvers: A case study. In Cavalcanti and Dams [10], pages 547–562. doi:
10.1007/978-3-642-05089-3 35. 3.2.2

[41] André Platzer and Edmund M. Clarke. Computing differential invariants of hybrid sys-
tems as fixedpoints. Form. Methods Syst. Des., 35(1):98–120, 2009. doi: 10.1007/
s10703-009-0079-8. 3.1.4, 3.1.4

[42] André Platzer and Jan-David Quesel. European train control system: A case study in formal
verification. In Formal Methods and Software Engineering, 11th International Conference
on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12,
2009. Proceedings, pages 246–265, 2009. doi: 10.1007/978-3-642-10373-5\ 13. 1, 2.1.2,
1, 2.2

[43] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Robust controller synthesis of switched
systems using counterexample guided framework. In 2016 International Conference on
Embedded Software, EMSOFT 2016, Pittsburgh, Pennsylvania, USA, October 1-7, 2016,
pages 8:1–8:10, 2016. doi: 10.1145/2968478.2968485. 4

[44] Daniel Richardson. Some undecidable problems involving elementary functions of a real
variable. J. Symb. Log., 33(4):514–520, 1968. 3.2

[45] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013. doi: 10.1007/
s10009-012-0249-7. 4

[46] Paulo Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Berlin, 2009. doi: 10.1007/978-1-4419-0224-5. 4

[47] Claire J. Tomlin, John Lygeros, and Shankar Sastry. A game theoretic approach to controller
design for hybrid systems. Proc. IEEE, 88(7):949–970, 2000. doi: 10.1109/5.871303. 4

[48] Shuo Yang, Xiang Yin, Shaoyuan Li, and Majid Zamani. Secure-by-construction optimal
path planning for linear temporal logic tasks. In 2020 59th IEEE Conference on Decision
and Control (CDC), pages 4460–4466, 2020. doi: 10.1109/CDC42340.2020.9304153. 4

[49] Liang Zou, Jidong Lv, Shuling Wang, Naijun Zhan, Tao Tang, Lei Yuan, and Yu Liu. Ver-
ifying chinese train control system under a combined scenario by theorem proving. In
Verified Software: Theories, Tools, Experiments, pages 262–280, 2014. 2.2

A Additional Definitions
We show formally how to obtain the forward continuation of a label in sketch as defined in
Eq. (10). The notation skip is used for the empty program. The arguments of fwd are label l and

29

game α.
fwd(l, α) where l ̸∈ labels(α) = skip

fwd(l, α ∪ β) =

{
fwd(l, α) if l ∈ labels(α)
fwd(l, β) if l ∈ labels(β)

fwd(l, α; β) =

{
fwd(l, α) ; β if l ∈ labels(α)
fwd(l, β) if l ∈ labels(β)

fwd(l, α∗) where l ∈ labels(α) = fwd(l, α) ; α∗

fwd(init, α) = α

fwd(l, {x′ = f(x)&Q ∧ l}) = {x′ = f(x)&Q ∧ l}
fwd(l, α) where α is atomic, except the ODE case above = skip

Note that in the case of fwd(l, α ; β) when l ∈ labelsα, α is not a demonic test because labels α:
demonic assertion=∅. This avoids triggering the continuation at the assertions added in Eq. (10)
instead of the actual control condition holes already present in Eq. (7). Additionally, ODEs and
loops are present in their own continuations, because of their unbounded nature. fwd has the
property of resulting in a sketch that fits in the grammar of Eq. (10), so it is well defined to apply
the function gamify on the result of fwd applied to a sketch for a label in it.

In addition, Fig. 1 provides the definition of prefix for a sketch as defined in Eq. (10). prefixl

produces the sketch that is the execution prefix of the hole labeled l in the given program sketch

prefixl(α) where l ̸∈ labels(α) = skip

prefixl(α; β) =

{
prefixl(α) l ∈ labels(α)
α;prefixl(β) l /∈ labels(α) ∧ l ∈ labels(β)

prefixl(α ∪ β) =

{
prefixl(α) l ∈ labels(α)
prefixl(β) l ∈ labels(β)

prefixl(α
∗) = α∗ ; prefixl(α) where l ∈ labels(α)

prefixl({x′ = f(x)&Q ∧ l}) = {x′ = f(x)&Q ∧ l}
prefixl(α) where α is atomic except ODE case above = skip

Figure 1: Execution prefix function prefix for label l.

30

	1 Introduction
	2 Completed Work
	2.1 CESAR by Example
	2.1.1 Background
	2.1.2 Control Envelopes
	2.1.3 Overview of CESAR

	2.2 Case Study: Train Control
	2.2.1 Generalizable Challenges

	3 Proposed Work
	3.1 Generalizing Control Envelope Synthesis
	3.1.1 Solution
	3.1.2 Solving
	3.1.3 Increased Expressivity
	3.1.4 Heuristics

	3.2 LLM Assisted Synthesis
	3.2.1 Arithmetic Queries
	3.2.2 Phase Based Control Guidance Input

	4 Related Work
	5 Timeline
	A Additional Definitions

