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Abstract—Automated train control improves railroad oper-
ation by safeguarding the motion of trains while increasing
efficiency by enabling motion within a maximal safe envelope.
Train controllers decide when to slow down or stop a train in
order to avoid collisions with other trains on the track, stay inside
movement authorities, and navigate slopes, curves and tunnels
safely. These systems must base their decisions on detailed motion
models to guarantee the absence of overshoot of the movement
authority (safety) and limit undershoot (efficiency). This paper is
the first to formally verify the safety of the full Federal Railroad
Administration model with all its relevant forces and parameters,
including track slope and curvature, air brake propagation, and
resistive forces as computed by the Davis equation. Due to the
significant competing influence of these parameters on train
stopping distances, even designing train controllers is a nontrivial
control challenge, which we solve using formal verification. For
increased generality at reduced verification effort, we verify
symbolic mathematical generalizations of the train control models
and subsequently apply efficient uniform substitutions to obtain
verification results for physical train control models.

Index Terms—train control, formal verification, hybrid sys-
tems, differential dynamic logic

I. INTRODUCTION

EMBEDDED software for many complex cyber-physical
systems like trains, planes, and self-driving cars is safety-

critical: errors can have disastrous consequences. In order
to ensure the safety of controllers, formal verification with
computer-checked, repeatable mathematical proofs presents a
particularly trustworthy method for controller design. This
paper studies formal verification as a tool to design and verify
a train controller, which is a practically important, representa-
tive problem with challenges common in other safety-critical
embedded systems: complex dynamics with transcendental
arithmetic, competing forces with subtle interaction, and ef-
fects whose exact magnitude is unknown at proof time.

Train controllers decide when to enforce braking to pre-
vent movement authority violation and collisions. They must
account for all the competing influences that govern train
motion. Uphill slopes decrease velocity, for example, which
decreases resistance, which permits a more rapid increase in
velocity, slope and curve effect, all while the train’s brake force
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builds gradually until saturation as air pressure propagates
along brake pipes. These complex interactions make it hard
to design a safe and efficient train controller, and even harder
to ensure it is always safe. This paper designs and verifies train
controllers for the Federal Railroad Administration (FRA)
freight train physics model [1], [2], contributing generalizable
verified controller design techniques.

Existing studies of formally verified train motion [3]–[5] do
not account for at least two effects amongst track grade, track
curvature, resistance, and air brake propagation time, rendering
their results inapplicable to most real-world scenarios. We sur-
mount the challenges of verification against the full dynamics
of the FRA freight train model, in which these effects interact
subtly with each other. Our verification results are significant,
because these parameters influence the motion of the train
in safety-critical and/or performance-critical ways. Neglecting
track slope profile and the gradual propagation of air pressure
braking, in particular, can render otherwise verifiably safe
train controllers unsafe, since their influence may diminish the
train’s ability to decelerate, causing collisions. Our verification
is valid for the realistic physics of the full FRA model [1], [2].

Before verifying controller safety, we first design con-
trollers, balancing efficiency with provable safety. Conserva-
tive controllers are mathematically more simplistic, and easier
to design and verify, but make railway operations inefficient
violating performance objectives. We start by presenting a
conservative controller and then demonstrate how to iteratively
make it more efficient by exploiting characteristics of the
physical train dynamics for better control.

Train controllers are assessed relative to a (changing) des-
tination stopping point—called end of movement authority:
overshoot of the end of movement authority is a safety viola-
tion, because that risks collision with other trains; efficiency is
measured in terms of end of movement authority undershoot.
We prove absence of end of movement authority overshoot
when using our controllers in the FRA model by verification
and demonstrate efficiency by simulation.

To keep our proofs as general and widely applicable as pos-
sible, we leverage nondeterministic controllers and a paradigm
of mathematical abstraction. Each controller is intentionally
built to be set-valued such that all of its control choices are
simultaneously proved safe under all circumstances in the FRA
model. The safety of these controllers implies the safety of all
their specializations [6], giving railroads significant freedom
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in how to adapt the verified controllers for their purposes.
Controller verification follows a two stage process: we first
prove mathematical models of abstract train control motion,
and then obtain proofs of the actual physical models of train
control by uniform substitution [7] to replace the abstract
function symbols of the mathematical models with physical
terms specific to a given train and railroad.

Crucially, our approach uses three different types of models:
(i) the high-fidelity physics model describing the kinematic
motion of trains along the track, (ii) our generalized mathemat-
ical abstractions of the physics model, and (iii) the simplified
but computable approximations of motion models used by the
respective train controllers. Our verification results prove that
the safety of (i) derives from the safety of (ii) and that all
control decisions following (iii) are safe in (ii).

Our proof is written in differential dynamic logic [7], [8],
and performed using the hybrid systems theorem prover KeY-
maera X [9]. We compare the efficiency with the concrete FRA
train models for a number of train consists (arrangement of
locomotives and cars) and scenarios [2]. Our verified models
act as safety envelopes for unverified controllers via runtime
enforcement checks using ModelPlex [10]. We illustrate their
behavior in simulation. The proved models are permissive and
only interfere in train control operation when acting otherwise
risks movement authority violation.

Contributions: The primary contribution of this paper is
the formal verification results justifying the safety of train
control in the FRA physics model. The secondary contribution
is the design of new, safe train controllers and their permis-
sive set-valued safe control envelopes. Technical contributions
are the ideas of the formal proofs, and of substituting a
specialized ground physics model into controllers designed
with an abstract mathematical model. Finally, our simulations
demonstrate the impact of verified train controllers in different
terrain. Proofs are available at https://figshare.com/s/
78d8e8dc20409de2aa68 with ideas sketched inline.

II. RELATED WORK

Due to their significance as safety-critical transportation sys-
tems, there have been many efforts to verify the safety of train
control systems [11]. One approach is extensive simulation
of train braking models [12], [13]. However, simulation can
only show safety in a limited number of cases and is less ap-
propriate when free acceleration is interspersed with braking.
Similar limitations apply to test-based safety assurance of train
control [14]. Our work uses differential dynamic logic (dL),
a logic with a deductive proof system for hybrid systems [7],
[8]. We write mathematical proofs that guarantee safety over
the infinite state space in a model of physical motion.

In the realm of formal verification, there have been many
studies of railway systems [15]–[17]. Discrete aspects of
train control have been verified at industrial scale [18], [19].
Many studies [20]–[24] focus on scheduling trains to avoid
route intersections. Train communication systems have been
formally verified [16], [25]. Such studies are complementary
to our work, which focuses on the motion of the train as it
interacts with the environment. Results on the correctness of
the motion of trains permit correct interaction with scheduling.

Studies of train motion have verified the European train
control system with moving blocks [3], and the Chinese train
control system [4], while ignoring the effect of resistance, air
brakes, track grade and curvature. The FRA model has been
verified while ignoring grade and curve [5]. Our work differs
by accounting for all forces in the FRA model, creating a
controller designed and verified against realistic physics.

III. BACKGROUND

A. Differential Dynamic Logic
Differential dynamic logic dL is a logic with a deductive proof
system for hybrid systems [7], [8]. We give a short overview.

Differential dynamic logic extends first-order logic with the
notion of hybrid programs. A hybrid program is semantically a
binary relation between states, mapping start states to the end
states that a program could reach. The program constructs in-
clude assignment, for example, x := e1 which instantaneously
assigns expression e1 to variable x. In the special case of
nondeterministic assignment, x:=∗, the transition relation
accounts for any possible real value being assigned to x.

The test operator, as in ?F , aborts the current run if formula
F is false. The continuous evolution operator, {x′ = f(x)&Q}
follows the ordinary differential equation (ODE) x′ = f(x) for
some nondeterministic amount of time, with evolution domain
constraint Q being true throughout evolution. Sequential com-
position, α;β, runs program α followed by program β, for
example, the discrete train controller α followed by the train’s
ODE β. The nondeterministic choice operator α∪β runs either
program α or β, for example, either accelerate the train with
α or brake with β. The loop operator α∗ runs hybrid program
α any nondeterministically chosen n≥ 0 times. It is important
for running a train control loop indefinitely. To express safety
properties about hybrid programs, we use the box modality
[α]F , which is true when at the end of all runs of hybrid
program α the formula F is true.

For proofs of dL formulas, we use dL inference rules [26],
[27]. The rules most relevant to the present work are loop
(loop), differential invariant (dI), and differential cut (dC).

(loop)
Γ⊢ J,∆ J ⊢ [α]J J ⊢ P

Γ⊢ [α∗]P,∆

(dI)
Γ⊢ e1 ≤ e2 Q⊢ [x′ := f(x)]e′1 ≤ e′2

Γ⊢ [x′ = f(x)&Q]e1 ≤ e2

(dC)
Γ⊢ [x′ = f(x)&Q∧C]P Γ⊢ [x′ = f(x)&Q]C

Γ⊢ [x′ = f(x)&Q]P
As usual, the loop rule uses an invariant J that holds

initially, inductively after each step, and implies the post con-
dition that we seek to prove. A differential invariant preserves
properties along the flow of a differential equation: if e1 ≤ e2
initially and e1 grows slower than e2, so e′1 ≤ e′2 (where
e′1 and e′2 are evaluated after substituting in the assignment
x′ := f(x) from the differential equation), then it remains true
that e1 ≤ e2. A more general rule form and its explanation
can be found in the literature [7], [27]. The idea behind a
differential cut is that if formula C holds true at the end of
every possible run of differential equation x′ = f(x), then C
must hold true throughout its evolution. Differential cuts can
be used to accumulate knowledge about a differential equation.

https://figshare.com/s/78d8e8dc20409de2aa68
https://figshare.com/s/78d8e8dc20409de2aa68
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B. FRA Train Kinematics Model

This section introduces the FRA model, that provides the
forces acting on a train [1, Eq. (1)]. After the net force on
the train has been identified, Newton’s second law, using train
mass, determines the acceleration that the train experiences,
which in turn determines change in velocity and change in
position for train control design. The forces are∑

F =−FG−FC−FB+FL−FR =mTa (1)

where FG denotes force due to track grade, FC resistance due
to track curvature, FB force from the brakes, FL force from
the locomotive engine (tractive effort), FR resistive forces,
and mT , train mass. Newton’s second law,

∑
F =mTa,

determines train acceleration a. Resistive force FR follows
the modified Davis equation [1, Eq. (18)]:

FR =ARw+BRn+CRwv+DRv
2 ,

where AR,BR,CR,DR are experimentally determined positive
constants whose numerical value given a choice of units can
be found in other sources [2], [28], [29]. Further, n is the
number of axles, and w, the weight of the train.

Grade and curve forces depend on the train position p on the
track. Grade force [1, Eq. (19)] is proportional to train weight
w and average track grade grade(p) underneath the train:

FG =AGw ·grade(p) .

Similarly, curve force [1, Eq. (21)] is a function of average
track curvature curve(p) along the train and train weight w:

FC =ACw ·curve(p) .

where AC and AG are positive multiplicative constants. Brak-
ing force can be modeled as the minimum of two linear
functions to capture the effect of air pressure brake force
buildup [1, Fig. 17] and stabilization. Let FB0 be the force
acting immediately on brake application, fp, the slope with
which brake force increases, t the elapsed time, and FBmax,
the force after air pressure in the air pressure brakes saturates.

FB =min(FB0+fpt,FBmax) .

Brake enforcement and train protection algorithms [1], [2] ap-
proximately solve a differential equation derived from Eq. (1)
to estimate the velocity and position of the train at future times.

C. Mathematical Model Abstraction

In order to maximize generality of the embedded software
design, minimize verification effort, and simplify future proof
maintenance, we present a mathematical abstraction of the
FRA’s train kinematics model. Concrete verified controllers
and their safety proofs for the fully expanded kinematics
model can be obtained automatically from the verified abstract
model by uniform substitution [7].

Our abstract train kinematic model in (2) is an ODE in
time. The rate of change of position is velocity, and the
rate of change of velocity is acceleration. The variables and
constants involved, along with their signs, when relevant,
are (i) Train position p, (ii) velocity v, (iii) velocity and

position-independent component of acceleration al ranging
from immediate braking ability −bmax < 0 to maximum train
engine acceleration amax > 0, (iv) acceleration due to air brakes
aa in range abmax ≤ 0 to 0, (v) rate of change mb of air
brake force, which is mp < 0 when brakes are ramping up
and 0 otherwise, (vi) map as from position to acceleration
due to grade, (vii) map ac from position to acceleration
due to curvature, and (viii) velocity-dependent resistance ar.
We chose a sign convention where resistive acceleration is
negative.

p′ = v,v′ = al+aa+as(p)+ar(v)+ac(p),a
′
b =mb (2)

with al ∈ [−bmax,amax],aa =max(ab,abmax),mb ∈{0,mp}

The Davis equation resistance ar(v)=−CRwv+DRv2

mT
has

the shape ar = a1v+a2v
2 when a1 =−Crg with gravity g

summarizes the linear coefficient of velocity, and a2 =−DR

mT

summarizes the quadratic coefficient. Grade and curvature are
represented by unspecified but bounded functions as and ac
that map train positions to a numeric value for acceleration
due to slope and average curvature, respectively. The quantity
al summarizes locomotive tractive effort (al ≥ 0) and train
deceleration (al < 0) as commanded by the train controller,
with adjustment for the velocity-independent resistance.

We later instantiate the proved abstract kinematic train
model by dL’s uniform substitution [7] to easily get proofs
for specific physical train models such as the FRA’s. Similarly,
we obtain proofs for specific train configurations when further
substituting values for coefficients, or even for a specific train
state when additionally substituting speed and position.

IV. MODEL STRUCTURE

We develop a conservative train controller in dL based on
the kinematic model of Section III-B, presenting it modularly
and introducing conceptually important model components
and functions along the way. We address the challenge of
representing track grade and curve, which are unknown at
proof time, using unspecified maps. In order to reason about
them, we bound the maps with assumptions quantifying over
all arguments. Our solution permits us to capture the full FRA
model and reason about it during verification. It generalizes to
other embedded software that must reason about unspecified,
bounded functions, such as noise or potential fields (e.g.
electro-magnetic or gravitational effect).

We prove the controller safe: relative to the realistic FRA
motion model, the controller will provably never permit the
train’s position to exceed the end of movement authority e,
though it might be inefficient, braking unnecessarily early.
Later, by revising modular components and functions to be
more arithmetically sophisticated, Section V will retain prov-
able safety but make the controller more efficient. Fig. 1 shows
the relationship between the resulting controller models.

A. Model Description

The train controller consists of a time control loop. The control
has a latency of time T > 0—the controller has to wait at most
this long before being able to change the throttle position.
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Control Loop α
Model 1

Dynamics
Model 2

Conservative
Theorem IV.1

Slope and Curve
Theorem V.1

Model 3
Theorem V.2

Model 4
Theorem V.3

Model ??
Corollary ??

Model 5
Corollary VI.1

used in used in

extended to
exploit track

slope and curve extended
to exploit
resistance

extended to
exploit air brakes

Uniform substitution

Uniform substitution

Uniform substitution

Fig. 1. Relationship between train models in this paper.

In practice, reaction time T is typically to the order of 1
second, but train controllers often keep decisions in effect
for a 10 second period without revising them [29]. Every
control cycle, the controller computes an overapproximation
stopDist(p,v,ab) of the stopping distance, the distance that
the train will travel before stopping if it were to accelerate
during the current control cycle, but then brake continuously
starting at the next control cycle, until it comes to a halt. If
the distance left to the end of movement authority exceeds
stopDist(p,v,ab), the controller continues free driving (with
any acceleration or deceleration choice within the physical
limits of the train), otherwise it brakes. This control cycle,
α(stopDist), is parametric in stopping distance, and ex-
pressed as a hybrid program in Model 1.

Model 1 Train control α(stopDist).

Reset Timer
∣∣ 1 t:=0;

Free Driving

∣∣∣∣∣∣∣
2

(
(?(e−p> stopDist(p,v,ab));

3 al :=∗; ?−bmax ≤ al <amax;

4 ab :=0; mb :=0)

Braking
∣∣ 5 ∪ al :=−bmax; mb :=mp

)
a) Train Dynamics: Model 2 describes the physical mo-

tion of the train according to the abstract mathematical model
of Eq. (2) augmented with a clock t′ =1 to switch back to
control after at most time T . We leave all constants symbolic
and prove safety for all values, so that individual railroads
have the flexibility to instantiate them with the values that
apply to their system and inherit our safety results. This
generality in controller design comes at the cost of higher
proof complexity, but compared to the alternative where we
would initialize these constants with a conservative value, this
allows for more efficient, tailored controllers adapted to the
specific rail operation.

b) Stopping Distance: In order to decide between free
driving and braking, the controller computes the upper bound
stopDist(p,v,ab) on the distance covered over one time
period of acceleration and subsequently braking to a stop.

Thus, our models provide two distinct specifications of the
distance that the train will take to stop. The first, indirect

Model 2 Train dynamics.

Dynamics

∣∣∣∣∣∣∣
1 p′ = v,a′b =mb,t

′ =1,

2 v′ = al+max(ab,abmax)+as(p)+ar(v)+ac(p)

3 & t≤T ∧v≥ 0

specification is through the differential equation in Model 2
that implicitly describes the physical motion of the train. The
second, approximate specification is stopDist in Line 2 of
Model 1, an explicit arithmetic expression that the controller
can evaluate efficiently to make decisions at runtime.

Efficiency concerns demand that stopDist(p,v,ab) be as
tight as possible; if the bound is too large, the controller
would enforce braking unnecessarily. But verifiable safety
requires stopDist(p,v,ab) to provably be an upper bound
on the distance that the train covers (as determined by the
dynamics). The tightest possible bound is the exact solution
of the differential equation. However, even ignoring the effect
of air brakes, the differential equation requires trigonomet-
ric solutions. Since we want mathematical provability, but
transcendental function arithmetic is undecidable [30] and
therefore not permitted by dL1, we cannot use the solutions
as bounds. Instead, we develop polynomial approximations,
which is a delicate design task because automated deci-
sion procedures for polynomial real arithmetic validity are
computationally expensive [31], [32], which constrains the
complexity of the polynomial approximations that can be used
as upper bounds. We therefore strike a balance between these
conflicting concerns, striving for efficiency while satisfying
mathematical provability.

To illustrate this approach, we start with a simple conser-
vative expression for stopDist. This expression is similar in
complexity to previous work [3], [5], but is now proved safe
for the full FRA physics model including slope, curve friction,
air brake propagation, and aerodynamic drag. We later improve
on this approximation, focusing on one contributing factor at
a time.

B. Stopping Distance: Conservative

This section constructs a first, conservative controller by
instantiating control loop α with an expression for stopDist,
and proves it safe. Referring back to the train dynamics
in Eq. (2), we first need to obtain an upper bound for v.
Integrating this bound via p′ = v computes a stopping distance
upper bound.

The first impediment to obtaining a provable upper bound
for v is that grade and curvature maps as and ac are arbitrary
functions, constrained only by upper and lower bounds, and
bounded gradients. At runtime, the train knows their exact
values as the controller is instantiated with maps for the
railroad it runs on. However, these maps are unknown at proof
time. And yet, the proof has to show safety of the train control

1Even after manually simplifying differential and modal expressions, arith-
metic subgoals are outsourced to arithmetic decision procedures, which are
subject to fundamental theoretic limitations in proving real arithmetic. So,
KeYmaera X and dL syntax does not permit undecidable arithmetic.
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ahead of time for all possible track maps in order to justify
safety of the train controller. In order to obtain a provable
upper bound on stopping distance, the proof therefore bases
on the limited information that we do have about the maps:
upper bounds on the potential values of as and ac.

A naı̈ve upper bound on as is the value of acceleration that
the train experiences when it is on the steepest permissible
downward slope, ms. Our proof will show that the distance
required to stop for any permissible grade map cannot exceed
the distance computed with the steepest downward slope. It
first shows that the true acceleration is bounded above by
an acceleration that uses the highest permissible value of
grade acceleration, then that actual velocity cannot exceed
the velocity computed using the worst-case acceleration, and
consequently, that traveled distance cannot exceed the stopping
distance computed using the worst-case estimate of velocity.

Accounting for grade force is important. On a downward
hill, for example, a train with a controller that ignores grade
would roll forward even at the end of its movement authority
which may cause accidents. In contrast, we can safely ignore
curve resistance when approximating stopDist, since resis-
tances shorten stopping distance (upper bound 0). These sim-
plifications result in differential equation v′2 = al+ms+ar(v),
since max(ab,abmax)= 0 while the train is accelerating, where
v2 is the upper bound on v that we integrate to compute
stopDist. However, the solution v2(t) is still transcendental:(√

4(al+ms) ·a2−a21

)
·

tan

(
t

√
4(al+ms)·a2−a2

1

2 +tan−1

(
a1+2a2v0√

4(al+ms)·a2−a2
1

))
−a1

2a2

The culprits are the linear and quadratic terms in velocity from
the Davis equation. With another simplification of 0 as an
upper bound for ar (resistance always works against the train’s
motion), we derive a polynomial expression for stopDist:

v′3 = al+ms ⇒ v3(t)= v0+(al+ms) · t

p′3 = v ⇒ p3(t)= p0+(v0+
al+ms

2
· t) · t

(3)

where v0 and p0 are the initial values of speed and position.
The solutions provide a conservative stopping distance bound.

stopDistb(p,v,ab)= vT +
amax+ms

2
·T 2︸ ︷︷ ︸

distance while accelerating

+
(v+(amax+ms)T )

2

2(bmax−ms)︸ ︷︷ ︸
stopping from increased speed

(4)

The conservative stopping distance stopDistb ignores its
arguments p and ab, but retains them for type uniformity
(required for substitution into α) with stopDist functions pre-
sented later in the paper. These later, more complex stopDist
functions do depend on p and ab.

The first two terms are the distance covered by the train
in one control cycle of acceleration, while the third term is
the distance that the train needs to stop should it start braking

right after, assuming the worst-case value of 0 for aa. This
conservative distance is similar to what has been used in the
literature [3], but has been adjusted to account for grade force.
Substituting Eq. (4) into control cycle α results in the dL
hybrid program of the conservative controller: α(stopDistb).

A physically important quantity is braking distance, the
distance that the train will travel before coming to a stop
should it start braking right now. We derive an upper bound,
brakeDistb(v,ab), which will be crucial to our proofs and
the initial assumptions, and is improved upon later.

brakeDistb(v,ab)=
v2

2(bmax−ms)
(5)

The last term of Eq. (4) is brakeDistb(v3(T ),0) with v3
according to Eq. (3) when al = amax.

Initial assumptions init(brakeDist) parametrized by
brakeDist, and initAirbrake (assumptions on air brakes)
are required to prove the conservative controller safe. Assump-
tions about unspecified functions are represented by universal
quantification over their input. This representation permits
derivation of a formula about the unspecified function at any
point of the train’s evolution by substituting the quantified
input with current values.

init(brakeDist)= amax > 0∧bmax > 0∧a1 < 0∧a2 < 0

∧ms > 0∧T > 0∧−bmax+ms < 0

∧v≥ 0∧e−p> brakeDist(v,0)

∧∀x(|as(x)|<ms)∧∀x(ac(x)≤ 0)

initAirbrake=mp < 0∧abmax < 0∧mb =0∧ab =0
(6)

Theorem IV.1 presents the dL formula representing the
safety of the conservative controller.

Theorem IV.1. The conservative braking controller guar-
antees that the train always remains within the end of the
movement authority. The dL formula below is provable, where
α is the control loop from Model 1 parameterized with Eq. (4)
for stopDist.

init(brakeDistb)∧initAirbrake
→ [(α(stopDistb);Model 2)∗]e−p> 0

Proof. The proof has been done in the theorem prover KeY-
maera X, but we present its central ideas here. We use loop
invariant e−p≥ brakeDistb∧ab ≤ 0 and split into cases for
free driving and braking corresponding to the nondeterministic
choice in Lines 2–4 of Model 1. On braking, the invariant is
maintained because the derivative of the distance that the train
will take to come to a stop does not exceed the derivative of the
distance to the end of movement authority, i.e., (stopDist)′ ≤
(e−p)′ by dI. On free driving for a control period T , we first
restate that the train maintains a distance to the end of move-
ment authority of at least stopDist adjusted for time t since
the last control decision, i.e., v(T − t)+ amax+ms

2 (T − t)2+
(v+(amax+ms)(T−t))2

2(bmax−ms)
by dC and dI. The required inequality re-

lation between the derivatives, −v≥−v+v′(T − t)−(amax+

ms)(T − t)+ (v+(amax+ms)(T−t))(v′−(amax+ms))
(bmax−ms)

, holds because
v′−(amax+ms)≤ 0.
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V. SAFE EFFICIENCY IMPROVEMENTS

We improve on the overapproximation for stopping distance in
order to make our controller more efficient. The FRA model
presents two challenges common in embedded controllers: it
uses functions whose exact values are unknown at proof time
(slope and curve maps), and has many interacting forces. Our
techniques address these problems with two general principles:
using quantified worst case bounds on unknown functions, and
separation of dependencies. The first technique relies on the
observation that the track changes are gradual and predictable
(the rate of change of unknown functions is bounded). It
drastically improves bounds on the effect of grade and curve
over one time period of acceleration, after resolving circular
dependencies between the variables of motion. The second
technique improves the estimate brakeDist by accounting for
air brake dynamics. It demonstrates a handling of triple inte-
gration, using mode-splitting to deal with the non-analytical
change of behavior when brakes saturate. The third technique
uses Taylor polynomials to capture the effect of resistance,
which would otherwise lead to transcendental arithmetic. The
track environment discussion in Section V-A and Section V-B
will become assumptions in our proofs, while the calculations
in Section V-C and Section V-D are machine-checked to be
correct approximations as part of the KeYmaera X proofs.

A. Bound on Gradient

The train controller knows the current slope as(p) and vertical
curves of the track, which determine transitions from one track
grade to another. This knowledge results in a bound hmax on
the difference in grade per unit length [28, p.616–619]:∣∣∂as(x)

∂x

∣∣≤hmax ⇒|a′s(p)| ≤ vhmax

The second inequality follows from the first using the chain
rule and p′ = v. After time T , as could have increased by no
more than uhmaxT , where u is some upper bound on v over
the course of T time, which we derive later in this section.

B. Bound on Curve Resistance

Similar to bounding the gradient change, we compute an upper
bound on the rate of change of curve resistance as a function
of velocity using track geometry. Curve resistance depends on
average curve curve(p).2 Assume that the tightest permissible
curvature for the railroad corresponds to radius r. The greatest
change in average curvature occurs when a train goes from a
track with the greatest permissible curvature to a straight track
(or vice versa). Over a small period of time dt, the portion of
the train transitioning from greatest curvature to 0 curvature
is dv, where v is velocity. So the rate of change of curve(p)

2In practice, degree of curvature is the angle subtended by a 100ft arc
of the track, 100ft chord of the track, or 100.7ft arc in the US. In Europe,
radius is generally used [28]. In our rate of change of curvature derivation,
we will use the mathematical idealization for average degree of curvature:
curve(p)=

∫ p
p−l

1
lr(x)

dx where l is the length of the train and r(x) is the
radius of curvature at track point x. This approximately relates to the US
definition by a multiplicative factor, with a small error introduced by the
granularity of the 100ft measuring arc. This multiplicative factor can be rolled
into the multiplicative coefficient ccft.

(taken in radians) with respect to time is − v
lr where l is the

length of the train. For a given train, ac relates to curve with
some constant multiplicative factor q. We use a′c = q v

lr = ccftv
with the constant factor ccft =

q
lr .

With this bound on the maximum rate of change of ac, we
now estimate the upper bound on curve resistance to be

ac(p)+uccftT

As before, u is an upper bound on velocity for duration T .

C. Tight Stopping Distance Approximation

The upper bounds as on gradient from Section V-A and ac on
curve resistance from Section V-B are summarized as:

as(p)≤ as(p0)=min(ms,as(p0)+uhmaxT )

ac(p)≤ ac(p0)=min(0,ac(p0)+uccftT )

This enables us to improve our estimation of stopping distance:

v′4 = al+as(p0)+ac(p0)

⇒ v4(t)= v0+
(
al+as(p0)+ac(p0)

)
T (7)

Upper bound v4 is tighter than v3 of Eq. (3) and thus inte-
grates to an improved stopping distance estimate. It depends
(transitively through as and ac) on the unknown upper bound u
on velocity, which we still need to estimate provably correctly.

Circular Dependencies: The upper bound on velocity, u, is
undefined in expression (7) above. We cannot use the bound
v4 for u, since v4 itself is phrased in terms of u. The problem
is a circular dependency between as and v: the bound on slope
acceleration as depends on speed v, while the upper bound on
speed v, in turn, depends on slope acceleration as; likewise for
ac. Physically, this is because if the train is moving faster, we
know less about the nature of the track—its curve and slope—
after the passage of some time, as the train is farther from its
previous position on the track. However, we need information
about the grade curve in order to better estimate the velocity
that the train is traveling at. In order to cut through these
circular dependencies, we use the conservative estimations
of these quantities from (3) as a base case to bootstrap
incrementally finer computations, as presented below.

We first use the initial upper bounds ms for as and 0 for
ac to get a conservative bound v(t)≥ v0+(amax+as+ac)t,
so that we can set u= v0+(amax+as+ac)T . Since (amax+
as+ac) is a positive upper bound on the train’s acceleration,
velocity could have increased no more than (amax+as+ac)T .
Hence u is indeed an upper bound on v through the T time
interval. Substituting this u refines the gradient and curve
resistance bounds.

as ≤ as(p0)=min(ms,as(p0)+

u︷ ︸︸ ︷
(v0+(al+ms)T )hmaxT )

ac ≤ ac(p0)=min(0,ac(p0)+(v0+(al+ms)T )︸ ︷︷ ︸
u

ccftT )

These expressions give the chosen definitions of as and ac by
replacing placeholder velocity bound u.

We could in principle further improve this upper bound
on speed by using v4 to obtain an even better bound on
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as and ac, which could in turn yield an improved bound
on v. However, extra levels of extrapolation increase proof
cost and computation time when the controller is run. Each
extra intermediate bound requires a constant number of extra
proof steps, but provides diminishing efficiency gains in return.
Intuitively, proof length is asymptotically linear in number
of iterations because under optimal proof rule application
ordering, each iteration induces one extra application of rules
dC to introduce the intermediate bound into the proof tree,
and dI to justify this intermediate bound.

The stopDist expression below uses v4 with u= v0+
(al+ms)T to estimate stopping distance, which is sufficiently
tight to make useful control decisions (see Section VII).

stopDists(p,v,ab)= vT +

(
amax+as(p)

2
+

ac(p)

2

)
T 2

−

(
v+

(
amax+as(p)+ac(p)

)
T
)2

2(bmax−ms)
(8)

We need further initial assumptions to prove the improved
slope-exploiting controller α(stopDists) safe. These assump-
tions pipe the results of the track environment discussion of
Section V-A and V-B into the computer-checked proof.

inits(brakeDist)≡ init(brakeDist)
∧amax−ms+mc > 0∧hmax ≥ 0

∧mc ≤ 0∧ccft ≥ 0∧∀x(ac(x)≥mc)

∧∀x′∀x(|a′c| ≤x′ccft)∧∀x′∀x(|a′s| ≤x′hmax)

(9)

The technique of this section applies to time-triggered con-
trollers (where a control loop runs with some known maximum
latency and sensors measure current state every cycle) for
physical systems with functions affecting the environment that
are unknown except for bounds on their rate of change. The
future value of the functions can be bounded in terms of their
worst-case rate of change. Furthermore, these bounds can be
used to compute bounds on other variables in the system, just
as here a bound on velocity was used to bound slope and
curve effect, which was again used to obtain a better bound on
velocity. The situation arises frequently in practice: examples
of unknown functions are a potential field, or a noise or error
effect, which may have circular dependence with position.

Theorem V.1. The slope-estimating controller guarantees that
the train stays within its movement authority. The dL formula
below is provable, where α is the control loop from Model 1
parameterized with Eq. (8) for stopDist.

inits(brakeDistb)∧initAirbrake
→ [(α(stopDists);Model 2)∗]e−p> 0

Proof. By proof in KeYmaera X. The proof builds on the
ideas from Theorem IV.1. Again, we apply the loop rule with
loop invariant e−p≥ brakeDistb∧ab ≤ 0. If the train brakes,
differential invariant rule dI again shows that the loop invariant
holds throughout differential equation evolution.

If the train chooses to accelerate, then as before, we restate
that the train maintains at least a distance of stopDists
adjusted for time t since the last control decision. Unlike

before, as instead of ms accounts for worst-case as, and ac
instead of 0 accounts for worst-case ac. Again, dI proves that
this adjusted inequality remains true. In order to prove the
required inequality on the derivatives, we first use differential
cut rule dC to show as(p)≥ as(p) throughout the control
cycle, and ac(p)≥ ac(p). There are two branches for each cut
corresponding to how the min in as and ac resolve. For ex-
ample, using initial position and velocity p0 and v0, for as, we
need to show that as(p)≤ms, and as(p)≤ as(p0)+uhmaxT .
While the former follows from the quantified assumption on
as(p), to prove the latter, we again adjust it for elapsed time
t, to argue that as(p)≤ as(p0)+(v0+uhmax(T − t)), proved
using dI. The required derivative inequality follows from
instantiating the quantified assumption bounding the rate of
change of (as(p))

′ ≤uhmax with the current position, and
showing that u is an upper bound on v in the control loop.
The argument for ac is analogous.

D. Effect of Air Pressure Brakes

The term brakeDistb conservatively neglects the significant
effects of air brakes to avoid reasoning about their time
dependence. This section derives a tighter brakeDista that
accounts completely for air brakes. It specifies a controller that
simultaneously benefits from the slope and curve estimation of
the previous section, and from air brake dynamics. The central
insight required to prove the improved controller safe is how
to compose reasoning about time-dependent air brake prop-
agation and velocity-dependent slope and curve estimations
from the previous section. We first show that brakeDista, the
component of stopDist affected by air brakes, is the desired
upper bound on distance to brake throughout the control
loop. Then, holding brakeDista constant, we perform the
differential reasoning on slope and curve estimation described
in the previous section. The two results together permit an
overall proof of safety of the air brake-exploiting controller.

To derive the improved brakeDista, we first compute some
intermediate functions from air brake dynamics. In Eq. (2)
during brake rampup, with slope relaxed pessimistically to ms,
and curve and resistance to 0, max(ab,abmax) evaluates to ab,
and mb to mp. The solution for v in the resulting differential
equation v′ = bmax−ms+ab,a

′
b =mp is a quadratic in t:

v= v0−(bmax−ms+ab)t+
1

2
mpt

2 (10)

Function tb below computes the time the train takes to
achieve full braking by subtracting current brake buildup ab

from maximal air braking abmax, and dividing by the rate of
increase in air brake force mp. If the train comes to a stop
before air brake saturation, it instead evaluates to the time until
the train stops, as computed by solving Eq. (10) for v=0.

tb(v,ab)=min
(
(abmax−ab)/mp,

(bmax−ms+ab)−|(bmax−ms+ab)
2−2mpv|

mp

)
(11)

The distance that the train travels before either stopping
or reaching maximum air brake effect is

∫ tb(v,ab)

0
pdt=

vtb(v,ab)+
1
2 (bmax−ms+ab)tb(v,ab)

2+ 1
6 (mp)tb(v,ab)

3.
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The velocity of the train after this period of buildup, by
Eq. (10), is vf = v−(bmax−ms+ab)tb(v,ab)+

1
2mptb(v,ab)

2.
So after the brakes finished ramping up, the distance traveled
until the train comes to a halt is

v2
f

2(bmax−ms−abmax)
, using

Newton’s third equation of motion. If the train stops before
finishing brake rampup, vf evaluates to zero, as required.
Adding the upper bounds on distance traveled before and
after brake rampup results in brakeDista(v,ab), an upper
bound on braking distance that accounts for the effect of
air brakes. While this derivation is manual, its result will be
verified by computer-checked proof in Theorem V.2.

brakeDista(v,ab)=

vtb(v,ab)+
1

2
(bmax−ms+ab)tb(v,ab)

2+
1

6
(mp)tb(v,ab)

3

+
v−(bmax−ms+ab)tb(v,ab)+

1
2mptb(v,ab)

2

2(bmax−ms−abmax)

stopDista(p,v,ab)= vT +

(
amax+as(p)

2
+

ac(p)

2

)
T 2

+brakeDista

((
v+

(
amax+as(p)+ac(p)

)
T
)2

,0
)

(12)
In order to prove the invariant that after a control cycle of
braking, e−p> brakeDista(v,aa), we must reason about
the three dynamically distinct cases: (i) when max(ab,abmax)
is abmax; (ii) when it is ab, and tb(v,ab) evaluates to
(abmax−ab)/mp; and (iii) when it is ab but tb(v,ab) evaluates
to (bmax−ms+ab)−|(bmax−ms+ab)

2−2mpv|
mp

. We split the model
dynamics into these three evolution domains, branching be-
tween the three possibilities in a loop to transition between
modes freely (Model 3). This does not affect the semantics of
evolution, but it simplifies syntactic proofs.

Model 3 Mode-split train dynamics.

Dynamics

∣∣∣∣∣∣∣
1 ( {Model 2 & abmax ≥ ab}
2 ∪{Model 2 & abmax ≤ ab∧ ta ≥ tp}
3 ∪{Model 2 & abmax ≤ ab∧ ta ≤ tp})∗

where ta =(abmax−ab)/mp,

tp =
(bmax−ms+ab)−|(bmax−ms+ab)

2−2mpv|
mp

Theorem V.2. The air-brake-exploiting controller guarantees
that the train stays within its movement authority. The dL
formula below is provable, where α is the control loop from
Model 1 parameterized with Eq. (12) for stopDist.

inits(brakeDista)∧initAirbrake
→ [(α(stopDista);Model 3)∗]e−p> 0

Proof. By proof in KeYmaera X. The high level idea is to use
an outer loop invariant e−p≥ brakeDist(v,aa)∧ab ≤ 0 and
again split into free driving and braking cases. On braking,
we show that the outer loop invariant is maintained in each
of the three dynamics modes using an inner loop invariant

consisting of 4 formulas, the most important of which is e−
p> brakeDist(v,max(ab,abmax)).

On free driving, we first show that brakeDista0 =
brakeDista

((
v+

(
amax+as(p)+ac(p)

)
T
)2
,0
)

is truly an
upper bound on all reachable brakeDist(v,max(ab,abmax))
values in the control cycle. Then, holding brakeDista0 con-
stant, we follow a proof similar to Theorem V.1 to show that,
in every mode, the increase in p does not exceed the decrease
in distance buffer vT +

(
amax+as(p)

2 + ac(p)
2

)
T 2. The argument

proceeds with a more complex inner loop invariant than the
braking branch required, consisting of 14 formulas, most of
which state that various upper bound expressions (such as on
velocity, grade and curve) remain upper bounds over the course
of the loop. By monotonicity, then, e−p> distance buffer+
brakeDista0 ≥ brakeDist(v,max(ab,abmax)).

E. Exploiting Resistance

Accounting for the quadratic dependence of resistance on
velocity, as discussed in Section IV-B, leads to an undecidable,
transcendental exact solution for stopping distance. The con-
troller must instead use an approximation. Since polynomial
arithmetic is decidable, Taylor polynomials are a natural way
to obtain decidable approximations. This section applies Tay-
lor approximation to the FRA model, identifying techniques
generalizable to verified control for other embedded systems
with transcendental dynamics. The stopping distance in this
section ignores the effect of air brakes3.

The Davis equation implies4 v′ ≥ (amax+as+ac)+a1v+
a2v

2, where slope and curve bounds as and ac are from Sec-
tion V-C. The first-order Taylor polynomial of this expression
for velocity is v0+

(
(amax+as+ac)+a1v0+a2v

2
0

)
. Using

this approximation at time T , with al = amax, as an upper
bound for velocity after a time period of acceleration, we
compute an expression for stopping distance that leverages
resistance. While this derivation is manual, its result will be
verified by computer-checked proof in Theorem V.3.

v′ =(amax+as+ac)+a1v+a2v
2

stopDistt(v)= vT +
(amax+as+ac)

2
T 2+

v+
(
v′
)
T

2(bmax−ms)
(13)

Unlike previous stopping distance estimates, this expression
is not always an upper bound. It uses resistance for original

3In principle, this section can be extended to exploit air brakes in analogy
to how Section V-D extends Section V-C. The main new complexity arises
from distributing “ghost train” dynamics (discussed later) over the modes of
air brake action.

4This is a lemma for the dL proof of Theorem V.3 justified as follows:
consider two identical trains on tracks t1 and t2, starting with the same
velocity. We want to bound the velocity v1 of the train on t1. Suppose t2
is the track with worst case track and grade, and that train on t2 (the “ghost
train”, that we have constructed for sake of argument) always accelerates
so that v′2 =(amax +as+ac)+a1v+a2v2. On the other hand, on track
t1, the real train that we require a proof about only obeys the restriction
|as|<ms. If v2−v1 is to become negative, it must cross the boundary
where its value is 0. However, whenever v1 = v2, necessarily, v′2 >v′1. This
ghost train argument serves a purpose similar to the “circular dependencies”
argument of Section V-C: reasoning about mutually influencing factors one at a
time. The ghost train permits us to represent and reason about a transcendental
bound on velocity, v2, derived using slope and curve estimates as and ac.
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velocity v0, which is only a conservative bound when resis-
tance is low enough to permit acceleration. This condition is
captured by predicate vbound.

vbound(v)≡ (amax+as+ac)+a1v+a2v
2 ≥ 0 (14)

For the Taylor approximation controller (Model 4), we define
the stopDisttp predicate (15), that unlike previous expres-
sions for stopping distance, returns a truth value. It uses
previous definitions stopDistt from Eq. (13), vbound (14)
to determine when stopDistt is applicable, and stopDistb
from Eq. (8) as a fallback.

stopDisttp(p,v,ab)≡
(
vbound(v)∧e−p> stopDistt(v)

)
∨

e−p> stopDists(p,v,ab)
(15)

Higher order Taylor polynomials permit analogous reasoning.
Theorem V.3 expresses that the Taylor polynomial controller
in Model 4 is safe.

Model 4 Taylor polynomial controller and dynamics.

Reset Timer
∣∣ 1 t:=0;

Free driving

∣∣∣∣∣ 2
(
(?stopDisttp(p,v,0);

3 al :=∗; ?−bmax ≤ al <amax)

Braking
∣∣ 4 ∪ al :=−bmax;mb :=mp

)
;

Dynamics
∣∣ 5 Model 2

Theorem V.3. The Taylor polynomial controller guarantees
that the train stays within its movement authority. The dL
formula below is provable.

init(brakeDistb)∧abmax =0∧∀x(0≤mc ≤ ac(x))

→ [(Model 4)∗]e−p> 0

Proof. By proof in KeYmaera X. We again start by showing
that the loop invariant from Theorem IV.1 is maintained (using
dL rule loop). Again, when the train is braking, the dI rule
proves that the loop invariant is preserved. When the train is
accelerating, we need to show that the controller has insisted
on a sufficient distance margin (stopping distance) so that even
after a time period, the train has enough space to stop. As
the Taylor polynomial computes stopping distance, we must
prove that it actually is an upper bound. We use a monotonicity
argument by introducing an auxiliary variable that represents a
“ghost” train, perpetually traveling down worst possible slope
as and curve ac. This isolates slope and curve from the effect
of resistance, breaking interdependence. We derive the Taylor
polynomial result on the ghost train, show that it goes no
slower than the real train, and that consequently the Taylor
polynomial result must hold for the real train. Other elements
of the proof remain similar to Theorem IV.1.

VI. PHYSICAL TRAIN MODEL PROOFS

A proof for the FRA train kinematics model [1] derives from
the proof for our abstract mathematical model in Theorem V.2

by uniform substitution [7], which replaces abstract function
symbols with specific terms using the correspondence in Sec-
tion III-C. Model 5 lists the model resulting from substitution.

Model 5 Kinematic train controller and motion model.

Reset Timer
∣∣ 1 t:=0;

Free Driving

∣∣∣∣∣∣∣
2

(
?e−p> stopDista(p,v,ab);

3 al :=∗; ?−bmax ≤ al <amax;

4 ab :=0; mb :=0

Braking
∣∣ 5 ∪ al :=−bmax; mb :=mp

)
;

Mode Split

∣∣∣∣∣∣∣∣∣∣∣∣

6 ( {dynamics & abmax ≥ ab}
7 ∪{dynamics & abmax ≤ ab

8 ∧(abmax−ab)/mp ≥ tp}
9 ∪{dynamics & abmax ≤ ab

10 ∧(abmax−ab)/mp ≤ tp})∗

with dynamics≡{p′ = v,a′b =mb,t
′ =1,

v′ = al+max(ab,abmax)−
AGw ·grade(p)

mT
−

ACw ·curve(p)
mT

− CRwv+DRv
2

mT
& t≤T ∧v≥ 0}

Corollary VI.1 (Physical train model is safe). The kine-
matic train controller for the kinematic motion model never
overshoots the end of movement authority, i.e., the following
formula is provable with bmax =

FB

mT
+ ARw+BRn

mT
and amax =

FL

mT
− ARw+BRn

mT
:

inits(brakeDista)∧initAirbrake
→ [(Model 5)∗]e−p> 0 .

Proof. By uniform substitution from Theorem V.2, using the
substitutions σ below:

σ=


amax 7→ FL

mT
− ARw+BRn

mT
bmax 7→+ FB

mT
+ ARw+BRn

mT

as(p) 7→−AGwgrade(p)
mT

ac(p) 7→−ACwcurve(p)
mT

ar(v) 7→−CRwv+DRv2

mT

VII. EVALUATION

For validation, we use ModelPlex [10] to derive a controller
monitor from Model 5 that measures the safety margin in de-
cisions of brake enforcement controllers from [1], [2] and our
verified control. That way, we measure if, and how well, our
verified train controllers and existing systems agree in order to
assess the safety of those existing systems and the efficiency
of our model. Existing brake enforcement controllers brake to
a full stop once engaged.

The ModelPlex monitor computes a robustness measure
indicating how close a decision is to losing the safety proof.
When the robustness measure is positive, the decision is
guaranteed to remain provably safe so that the system enjoys
the safety proof of the verified model. When it is negative,
emergency brakes should be applied for safety reasons. The
ModelPlex controller monitor follows the structure of the
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TABLE I
FRA TRAIN PARAMETER INSTANTIATION EXAMPLE.

Param. Value Unit Description

AR 0.6 lbf/ton (constant) weight coefficient
BR 20 lbf/axle (constant) train-size coefficient
CR 0.01 lbf/tonmph (linear) speed coefficient

DR
0.07 lbf/mph2

(quadratic) aerodynamic coefficient
0.294 (for loaded cars)

AG 20 lbf/ton (constant) weight coefficient

verified model when it computes robustness. For example,
a monitor for Lines 2–3 of Model 5 describes their effect
with the formula e−p> stopDista(p,v,ab)∧−bmax ≤ al <
amax which translates to the robustness measure

min(e−p−stopDista(p,v,ab), al+bmax, amax−al) .

The most important elements of the full Model 5 monitor are:
• in free driving (when e−p> stopDist) it combines re-

maining position margin (e−p−stopDist) with accel-
eration choice robustness (min(al+bmax,amax−al) from
control decision a:=∗;?−bmax ≤ al <amax) and speed
robustness (v from evolution domain constraint v≥ 0);

• during braking, which is always allowed, it measures
speed robustness (v per evolution domain constraint).

Because ModelPlex’s robustness measure combines multiple
quantities of incompatible units, there is no direct interpreta-
tion of its magnitude, just its sign.

For validation, we implement the train model of Eq. (2)
in Python by numerical integration, instantiating the model
parameters as in FRA models [1], [2]. These parameter values
are estimated from train test runs and standards [2] and require
careful consideration of their units (Table I).

Our evaluation compares start braking and stopping points
of trains, highlighting braking performance in terms of over-
shoot (safety risk) and undershoot (FRA performance objective
of a maximum undershoot of 1000ft [1]) of the end of
movement authority. We follow [2, p. 47] and implement the
baseline controllers using numeric forward Euler integration to
simulate the model in order to determine the stopping distance.
Our verified controllers neither use numeric integration nor
include the dynamic model, but instead decide based on the
stopping distance overapproximation stopDista of Eq. (12).

The most interesting train behavior arises from the subtle
interplay between air pressure propagation, aerodynamic/roll
resistance, and acceleration/deceleration due to slope. It peaks
on crests that change gradient from uphill to downhill and in
troughs that change gradient from downhill to uphill. When
calculating stopping distance, numerical integration in the
baseline enforcement algorithms discretizes train speed and
position to calculate forces, which overestimates resistance
while simultaneously underestimating available brake force.
Acceleration/deceleration due to slope is even more subtle as
it depends on the position of the train along the slope (e.g.,
on a crest changing from uphill to downhill, deceleration on
the uphill segment is overestimated until the train passes the
top, afterwards acceleration is underestimated). These effects
do not balance out and thus make numerical integration errors

unreliable and hard to predict. Moreover, changing the integra-
tion step size shifts how distance estimates are biased towards
undershoot or overshoot (e.g., in typical configurations, brake
rampup is the dominating influence on stopping distance, and
so larger integration step sizes bias towards undershoot). As
a result, for any given configuration of numerical integration
in enforcement algorithms, we can construct scenarios where
the numerical integration underestimates stopping distance
and train enforcement exhibits unsafe behavior. Our formal
models and proofs design provably correct stopping distance
overapproximations instead of using numerical integration and
are, therefore, not subject to these intricate safety tradeoffs.

A. Stopping Behavior in Troughs
Our first validation in Fig. 2 uses an FRA train configuration
[1, Fig. 10] of a medium (75 cars), loaded (car weight
286klbf), mixed freight train traveling at initial speed 60mph
in a trough, with train starting position at 0ft. The trough
is configured with uniform rate of change from 0.5% down-
hill to −0.5% uphill between positions 0ft and 7000ft. We
compensate for speed loss and gain due to gradient with
locomotive tractive effort and locomotive braking, but engage
air brakes only for the full braking maneuver when attempting
to not exceed the movement authority. In this experiment,
we configure our monitors and controllers for a maximum
uphill/downhill gradient of 1% for slope estimation. Hence
the verified controllers will leave a gap to the desired stop-
ping point on level grade and less steep slopes. We identify
challenging configurations by sweeping points in the range
4000ft–8000ft at 10ft steps, and find that stopping distance
calculation in the base enforcement algorithm underestimates
stopping distance for 19 (out of the 400) movement authority
endpoints in that range. Fig. 2 compares the base enforcement
algorithm [1] to our verified controller on one of these chal-
lenging points at 7910ft, past the maximum uphill slope of
the trough. The base enforcement algorithm in Fig. 2a uses
numeric integration to determine the stopping distance, and
adds a generous constant fudge factor plus speed-dependent
safety offset that results in the train initiating braking at 3609ft.
The maneuver finishes at 5889ft, stopping 2021ft short of the
end of movement authority. Our verified controller does not
use any such offsets and in Fig. 2c initiates braking much
later at position 5192ft, stopping significantly closer to the
movement authority endpoint at 7408ft, limiting undershoot
to 502ft.

In Fig. 2b, we remove the safety offset from the base
enforcement algorithm. This experiment illustrates the subtle
interplay between forces and their safety consequences: even
though the uphill segment of the trough helps in reducing
stopping distance, numeric integration overestimates this effect
and initiates braking too late, which our monitor detects at
5192ft. When we ignore the warning, the train subsequently
overshoots the desired stopping point by 9ft (highlighted in
red5) with a remaining speed of 7.8 ft

s when passing the desired

5The controller monitor subsequently no longer flags a violation, because
the base enforcement algorithm then applies the correct decision of maximum
braking (agreeing with the model). But it does so too late, as the earlier
monitor warning was ignored.
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(a) Base enforcement algorithm [1] initiates braking at 3609ft and stops
at position 5889ft with an undershoot of 2021ft, which exceeds the FRA’s
1000ft maximum undershoot performance objective [1].
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(b) Base enforcement algorithm [1] without offset in trough overshoots by
9ft �. Light-gray dotted lines mark other challenging movement authority
endpoints in the range 4000ft–8000ft that would also be violated.
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(c) Verified controller limits undershoot in trough to 502ft.

Fig. 2. Comparison of start braking (dashed vertical line) and stopping
points (solid vertical lines) of base enforcement algorithm [1] and Model 5 in
a trough from 0.5% downhill at start to −0.5% uphill at 7000ft, with end of
movement authority (dotted vertical line) at 7910ft, past the maximum uphill.

stopping point. Initiating fallback control al =−bmax at the
monitor violation would have kept the train from overshooting
the movement authority.
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Fig. 3. Initial conditions of proof (Corollary VI.1) not satisfied �: an
underpowered train on a 3% downhill slope needs air brakes to stay stopped;
in this scenario, the stopping point is closer than the rolling distance during
brake rampup.

B. Stopping Behavior on Crests

A central assumption in the brake enforcement algorithms and
thus an initial condition in our proof is that the locomotives
of the train are not underpowered, which means their tractive
effort is enough to overcome maximum uphill slope and stay
stopped on the maximum downhill slope. Fig. 3 illustrates how
an underpowered, initially stopped train starts rolling on a
downhill slope until the air brakes build enough deceleration
to stop the train. The train configuration violates the initial
conditions of our proof and is unsafe to start in the first place.

Underpowered locomotives are especially challenging on a
crest where (full) tractive effort is needed to limit the speed
loss on the uphill slope and regain desired speed on the down-
hill segment, but air brakes are needed to stay stopped. Fig. 4
compares the behavior of the base enforcement algorithms
and our verified algorithm with underpowered locomotives on
a crest with movement authority endpoint at 7920ft. In this
experiment, we configure our monitors and controllers for a
maximum uphill/downhill gradient of 3% for slope estimation.

Numeric integration underestimates stopping distance in
some configurations, whereas our verified controller correctly
identifies the need to engage air brakes in time while simul-
taneously avoiding the inefficiencies of fudge factors.

VIII. CONCLUSION

We created formally verified train controllers that account for
the full FRA model, with the competing influences of track
grade, curve resistance, air brakes and Davis resistance. We
used information about the behavior of the forces to improve
efficiency, with techniques that generalize to resolve impor-
tant challenges in safety critical embedded software design.
Validation in simulation shows significant improvement in
undershoot over conservative controllers that use constant and
speed-dependent safety offsets, and improved safety compared
to controllers that ignore safety offsets. Further validation and
comparison of the train controller characteristics in higher
fidelity simulators is interesting future work.
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(a) Base enforcement algorithm [1] undershoots by 1539ft.
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(b) Base enforcement algorithm [1] without offset overshoots by 13ft
�. Light-gray dotted lines mark other challenging movement authority
endpoints in the range 4000ft–8000ft that the algorithm would also
overshoot.
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(c) Verified controller (Model 5) limits undershoot to 528ft.

Fig. 4. Initial conditions of proof (Corollary VI.1) not satisfied �: an
underpowered train on a crest from 3% uphill to −3% downhill slows down
uphill despite full tractive effort and regains speed on the downhill segment,
but needs air brakes to stay stopped; in this scenario, the movement authority
ends past the rolling distance during brake rampup.
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